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PREFÁCIO 

"Grande progresso tem sido feito na ciência elétrica, principalmente na Alemanha, 

pelos cultivadores da teoria de ação à distância. As valiosas medições elétricas de W. 

Weber são interpretadas por ele de acordo com sua teoria, e a especulação eletromagnética 

que foi originada por Gauss, e continuada por Weber, Riemann, J. [F.] e C. Neumann, [L.] 

Lorenz, etc., está baseada na teoria de ação à distância, mas dependendo ou diretamente da 

velocidade relativa das partículas, ou da propagação gradual de alguma coisa, seja potencial 

ou força, de uma partícula à outra. O grande sucesso obtido por estes homens eminentes na 

aplicação da matemática aos fenômenos elétricos, fornece, como é natural, peso adicional às 

suas especulações teóricas, de tal forma que aqueles que, como estudantes da eletricidade, 

se voltam em direção a eles como as maiores autoridades na eletricidade matemática, 

provavelmente assimilariam, junto com seus métodos matemáticos, suas hipóteses físicas. 

Estas hipóteses físicas, contudo, são completamente diferentes da maneira do olhar os 

fenômenos que eu adoto, e um dos objetivos que tenho em vista é que alguns daqueles que 

desejam estudar eletricidade podem, ao ler este tratado, ver que há uma outra maneira de 

tratar o assunto, que não é menos apta a explicar os fenômenos, e que, apesar de qúe em 

algumas partes ela possa parecer menos definida, corresponde, como penso, mais fielmente 

com nosso conhecimento atual, tanto naquilo que afirma quanto naquilo que deixa indeciso. 

De um ponto de vista filosófico, além disto, é extremamente importante que os dois 

métodos sejam comparados, ambos os quais tiveram sucesso na explicação dos principais 

fenômenos eletromagnéticos, e ambos os quais tentaram explicar a propagação da luz como 

um fenômeno eletromagnético e de fato calcularam sua velocidade, enquanto que ao mesmo 

tempo as concepções fundamentais sobre o que de fato acontece, assim como a maioria das 

concepções secundárias das quantidades envolvidas, são radicalmente diferentes." 
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Estas são as palavras de James Clerk Maxwell, no Prefácio de sua obra máxima, A 

1TeatÍJe on Electricity and M agn~ti•m. Como se pode ver deste trecho, Maxwell via uma 

diferença conceitual entre suas concepções, derivadas em grande parte das de Faraday; 

e as de Gauss e Weber, entre outros. Maxwell reconhece que ambas as formulações são 

compatíveis com os principais fenômenos do eletromagnetismo, e que é extremamente 

importante comparar os dois métodos. 

E é justamente dentro deste espírito geral que se encontra o objetivo deste livro. 

Nossa intenção básica é apresentar de maneira razoavemente completa a Eletrodinâmica 

de Weber. Como Maxwell afirmou e mostrou mais de uma vez, a lei de Weber é compatível 

com as equações de Maxwell (leis de Gauss, Ampere e Faraday), e só difere das concepções 

de Ma.xwell em aspectos filosóficos. Mostramos no decorrer do trabalho como se derivam 

as equações de Maxwell a partir da força de Weber. 

A admiração de Maxwell pelo trabalho de Weber também pode ser vista observando­

se que Maxwell dedicou todo o último capítulo de seu livro mais importante a apresentar 

a eletrodinâmica de Weber e a mostrar sua compatibilidade com os principais fatos 

conhecidos do eletromagnetismo. 

Este livro destina-se a estudantes dos últimos dois anos de um curáo de graduação em 

físic!i, engenharia ou matemática; ou ainda a estudantes destes cursos que estejam nos dois 

primeiros anos da pós-graduação e que ainda não tenham se familiarizado com o assunto. 

Este trabalho visa a ser completo no sentido de que não se requer nenhum conhecimento 

prévio da lei de Weber para seguÍ-lo. Para que o estudante possa acompanhar o ~urso 

são necessários como pré-requisitos ria área de matemática que ele já tenha cursado uma 

disciplina de cálculo diferencial e integral, e uma de análise vetorial (incluindo os teoremas 

de Gauss e de Stokes). Na área de física já deve ter c;,_rsado mecânica e eletromagnetismo 

ao nível de ciclo básico, e que já tenha cursado ou esteja cursando os cursos intermediários 

ao nível de um Symon, Reitz e Milford, Lorrain e Corson, ou Panofsky e Phillips. 

Este livro está preparado para um curso de um semestre, e com este objetivo foram 

incluídos exercícios ao final de cada capítulo. É fundamental que o estudante resolva 

detalhadamente cada um destes exercícios já que esta é uma parte integral e essencial do 

curso. 
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O assunto do livro se encaixa dentro da física clássica, por este motivo não tratamos 

aqui da mecânica quântica ou da teoria da relatividade .de Einstein. Um aprofundamento 

em qualquer destes assuntos está além dos objetivos deste trabalho. 

Fbi incluída uma bibliografia ampla no fim do livro para penuitir um aprofundamento 

maior aos estudantes mais interes$ados. Pode-se usar estas referências recentes como 

sugestão de tópicos de pesquisa ou de trabalho aos estudantes de pós-graduação. No texto a 

bibliografia é indicada pelo sobrenome do autor e ano de publicação. Exemplo: (Edwards, 

Kenyon e Lemon, 1976). As referências estão completas (com ano, volume, página e título 

do artigo) para incentivar os leitores a procurarem e estudarem os originais. Ganha-se 

mtÚta coisa com isto e muitas vezes os artigos originais são facilmente encontrados em 

bibliotecas universitárias com um bom acervo. 

Na medida do possível acrescentamos informações históricas relevantes no corpo do 

texto. O objetivo é dar o contexto histórico de algumas descobertas e fazer uma análise 

crítica de alguns tópicos. A fonte para a maior parte destas informações foram os artigos 

originais e os excelentes livros de Whittaker (A History of the Theoríes of Aether and 

Electrícity ), O'R.ahilly { Electromagnetíc Theory- A Cri ti cal Examination of Fundamentais) 

e Mach ( The Principies o f Physical Optics - An Historical and Philosophical Treatment ). 

Sugerimos fortemente um estudo atento destes três livros a todos que queiram aprofundar 

de maneira consciente e crítica os seus conceitos nesta área fundamental da ciência. 

Em todo o livro usamos o Sistema Internacional de Uuidades. Quando defiuimos 

alguma grandeza usamos "=" como símbolo de definição. 

Agradecimentos: Aos alunos da graduação e da pós-graduação que seguiram este 

curso, pelas críticas construtivas que apresentaram nas vezes em que este curso foi 

ministrado. Ao Centro Acadêmico da Física da UNICAMP por ter me convidado a 

ministrar este curso durante o "I Curso de Inverno" (1990). Ao Instituto Nacional de 

Pesquisas Espaciais {INPE) de São José dos Campos, por ter me convidado a ministrar 

este curso no INPE em 1991. Aos Drs. Peter e Neal Graneau, James Paul Wesley, 

Thomas E. Phipps Jr., P. T. Pappas, Domina E. Spencer, Gerald Pellegrini, Cynthia K. 
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deste livro e que me ajudaram com suas idéias e sugestões. Aos estudantes que estão 
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1} Revisão do Eletromagnetismo Clássico 

1.1 • Introdução 

O estudo da natureza e das leis que a regem são alguns dos objetivos principais dos 

cientistas. Os físicos, em particular, se dedicam a pesquisar os fenômenos mecânicos, 

gravitacionais, elétricos, magnéticos, ópticos, nucleares, etc. Neste capít~o vamos nos 

concentrar no estudo do eletromagnetismo clássico. 

Este é o nome que se dá l ciência que trata de uma maneira unificada das interações 

entre cargas elétricas, ímãs, correntes elétricas e da radiação eletromagnética (luz visível, 

raios X, ondas de rádio, etc.) Embora desde os gregos já se conhecessem alguns fenômenos 

elétricos (Tales de Mileto, - 600 a. C., observou que quando se atritava o âmbar este atraía 

pequenos objetos) e magnéticos (os gregos sabiam que a magnetita, um tipo de pedra, 

atraía pedaços de ferro), o conhecimento e desenvolvimento mais amplo desta ciência só 

passou a ocorrer a partir de aproximadamente 1600. É neste ano que William Gilbert (1540 

- 1603) publica o importante livro de Magnete, que trata do magnetismo e da eletricidade. 

É nele que Gilbert apresenta sua grande descoberta de que a própria terra é um ímã 

permanente, e assim explica a razão das agulhas magnéticas apontarem numa mesma 

direção. É a ele também que se deve a distinção clara entre atração elétrica e magnética. 

Também a óptica passa por um grande desenvolvimento a partir desta época. Embora 

os gregos já conhecessem a lei de reflexão (ângulo de incidência igual ao de reflexão) e o 

fenômeno da refração, a lei que rege este último fenômeno só foi descoberta por Snell (1591 

- 1626) por volta de 1621. A primeira publicação desta lei ocorre em 1637 no apêndice A 

Dióptrica, do famoso e agradável livro Discurso Sobre o Método, de René Descartes (1596 

. 1650). 

A partir daí estes ramos foram se desenvolvendo mais ou menos independentemente. 

A descoberta da existência de dois tipos de eletricidade (positiva e negativa, como dizemos 

hoje em dia) é devida a du Fay (1698 - 1739) em 1733-4. O princípio de conservação 

de cargas elétricas é devido a Benjamin Franklin ( 1706 - 1790) em seus experimentos de 
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1747. A lei do inverso do quadrado da distância para as forças eletrostáticas foi sugerida 

entre outros por Priestley (1733- 1804), em 1767, e estabelecida experimentalmente por 

Coulomb (1736 - 1806), em 1785. A mesma lei relativa a pólos magnéticos foi sugerida 

entre outros por Michell (1724 - 1793), em 1750, e estabelecida experimentalmente por 

Coulomb, em 1785. Um importante predecessor de Coulomb ,no que se refere à atração 

entre pólos magnéticos foi o físico experimental alemão Aepinus. Em 1759 ele publicou um 

importante livro que influenciou a Coulomb, onde desenvolve a idéia de ação à distância 

entre os pólos magnéticos, idéia que acabou suplantando o conceito de circulação de um 

fluido magnético que havia sido sustentado por Descartes, entre outros. O livro de Aepinus, 

publicado originalmente em latim, foi traduzido a pouco tempo para o inglês ( Aepinus, 

1979). 

lsaac Newton (1642 - 1727) descobre a decomposição da luz branca nas cores do 

espectro (arco-íris) em 1666. Ele foi também o primeiro a medir a periodicidade da luz, 

isto é, aquilo que hoje em dia chamamos de comprimento de onda, embora para ele a 

luz fosse um fluxo de partículas (teoria balística) e não uma perturbação ondulatória em 

um meio (éter). Também se deve a Newton a primeira interpretação correta do fenômeno 

da polarização da luz, em 1717. Publicou seu segundo grande livro '(o primeiro sendo 

Princípio• Matemático• de Filosofia Natural; de 1687), Óptica, em 1704 (ver Newton, 1952 

a, b). A descoberta de que a luz se propaga no tempo (e não instantaneamente), e o 

primeiro valor da velocidade da luz são devidas a Roemer (1644 - 1710), em 1675. 

A interconexão entre os fenômenos elétricos e magnéticos, embora pressentida por 

muitos, só foi descoberta por jlfersted (1777 - 1851) em 1820. Em seguida a isto surgem 

os grandes trabalhos de Ampere (1775 - 1836), no período 1820 - 1826, e Faraday (1791 -

1867), a partir de 1831. A interconexão dos fenômenos elétricos e magnéticos com a luz, 

embora também pressentida por muitos, só ocorre formalmente pela primeira vez com os 

trabalhos de Maxwell (1831 - 1879), no período 1860 - 1864. A confirmação experimental 

das predições teóricas de Maxwell veio com Hettz (1857- 1894), no período 1885- 1889. 

Estes trabalhos formam a base do eletromagnetismo clássico. Revisaremos este 

assunto neste capítulo. Como há milhares de livros que tratam desta área, em todos 

os níveis, faremos apenas uma curta revisão de alguns tópicos, especialmente daqueles 
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que serão relevantes na discussão da teoria de Weber. Devido 80 objetivo deste livro 

deixaremos de tratar de muitos assuntos importantes do eletromagnetismo moderno, mas 

ó leitor certamente encontrará muitos livros especializados tratando destas áreas. Nosso 

objetivo 80 .escrever este capítulo é dar um pano de fundo para a introdução da teoria de 

Weber. Com.isto mais para frente poderemos fazer uma comparação mais detalhada entre 

a eletrodinâmica de Weber e o eletromagnetismo clássico. 
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1.2 - Equações de Movimento 

Depois deste pequeno reswno histórico podemos voltar ao assunto principal deste 

capítulo que é wna apresentação do eletromagnetismo clássico. Em linhas gerais pode-se 

dizer que este é constituído de quatro partes principais, independentes wna da outra, mas 

todas necessárias para wna formulação completa da teoria. São elas: 

(A) Equação de movimento, 

(B) Força de Lorentz, 

(C) Equações de Ma.xwell, 

(D) Equações ou relações constitutivas do meio. 

As equações ou relações constitutivas do meio sao descrições empíricas das 

propriedades dos materiais. Como tais elas não dependem de com qual teoria se está 

trabalhando e valem do mesmo jeito em todas as formulações teóricas. Exemplos: Lei de 

Ohm (V= RI ou f= uiJ), D = eE, B = !Jfi, etc. Nestas relações R, u, e, e 1-1 são 

propriedades características de cada meio, sendo medidas empiricamente. Daqui para a 

frente nos concentraremos apenas nos aspectos (A), (B) e (C). 

Um dos problemas mais típicos da física é descrever o movimento de corpos materiais 

sob a ação de forças. A forma usual mais tradicional de tratar deste problema é usando os 

três famosos axiomas ou leis de movimento de Newton. Estas leis são aqui apresentadas 

na forma como Newton formulou-as originalmente em 1687 (Newton, 1952 a) no· livro 

Princípio• Matemático• de Filo.ofia Natural. Este livro, mais conhecido pelo primeiro 

nome Principia, escrito originalmente em latim, é por muitos considerado como a maior 

obra da ciência de todos os tempos. Suas leis: 

1!!. Lei: Todo corpo continua em seu estado de repouso, ou de movimento uniforme 

em uma linha reta, a não ser que seja forçado a mudar este estado por forças impressas 

sobre ele. (1.1) 

li!!. Lei: A mudança de movimento é proporcional à força motriz impressa; e é feita 

na direção da linha reta na qual esta força é impressa. (1.2) 
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lll.!. Lei: A toda ação há sempre oposta uma reação igual. Ou, as ações mútuas de 

dois corpos um sobre o outro são sempre iguais, e direcionadas às partes contrárias. {1.3) 

Em linguagem vetorial moderna estas três leis poderiam ser reescritas como segue: 

J.!. Lei: Se FR = O então o corpo fica parado ou em movimento retilíneo uniforme. ( t;."' J.i,) 
{1.4) 

H.!. Lei: FR = :, ( mii) . {1.5) 

{1.6) 

Em (1.4) e (1.5), FR é a força resultante agindo sobre o corpo de massa m, e v é a 

velocidade deste corpo. Em todo este trabalho Fji significará a força que o corpo j ex~rce 

sobre o i (isto é, a força em i devido a j). Logo em (1.6) FAB é a força que A exerce em 

B, e o oposto para FBA· 
Caso a massa seja constante, a segunda lei de Newton fica na forma 

(1.7) 

onde ã é a aceleração do corpo de massa m. Neste livro nos concentraremos neste último 

caso e não trataremos de alguns problemas de variação de massa típicos da mecânica (como 

o do canúnhão que vai perdendo areia, ou o do foguete que vai expelindo gases e variando 

sua massa). 

Antes de prossegnir vale à pena· comentar que a aceleração que aparece em {1. 7) é a 

aceleração do corpo em relação ao espaço absoluto, conforme formulado por Newton. Pode­

se também dizer que esta é a aceleração do corpo em rel~ão a um referencial inercial. Não 

discutiremos estas noções de espaço absoluto ou referencial inercial. Embora a terra não 

seja um referencial inercial (sabe-se isto por ela girar em relação ao referencial das "estrelas 

fixas," por ter uma forma achatada nos pólos, e por experiências como as do pêndulo de 

Fbucault ), pode-se na maior parte dos casos considerá-la como tal. Em termos práticos 

isto significa que em geral pode-se usar as leis de Newton no referencial do laboratório 

(os efeitos da não inercialidade da terra são muitas vezes pequenos comparados com o 
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que se está observando). Isto é válido na maioria das situações nas quais os movimentos 

são restritos a uma pequena área na superfície da terra, e têm uma duração pequena 

comparada com 24 horas. Neste sentido um observador com velocidade constante (em 

módulo e sentido) em relação à. terra tambêm pode ser considerado como sendo inercial. 

Caso ele esteja acelerado isto deixa de ser válido. 

Há duas formas da terceira lei de Newton: ação e reação forte (quando a força está 

80 longo da reta que une os dois corpos) e fraca (quando a força tem pelo menos uma das 

componentes que não está 80 longo da reta que une os dois corpos), ver Figura 1.1. 

A) 
A 8 ação e reação forte 

FsA FAB 

B) 
A 8 

ação e reação forte 
FBA F•s 

C) 
A B 

ação e reação fraca / 
/.s Fs• 

D) A B ação e reação fraca I 1 
FBA FAB 

E) A B não há ação e reação 
FsA FAs=O 

F) A B não há ação e reação I 
F.s FsA 

Figura 1.1 

Nesta figura mostramos dois exemplos onde vale a terceira lei de Newton na forma 

forte, dois na forma fraca, e dois exemplos fictícios onde a terceira lei de Newton não é 

satisfeita. 

Para resolver um problema qualquer na física em geral usamos (1.7). Para isto 

precisamos de relações precisas para a força, e estas relações vão depender do tipo de 

interação a que o corpo está sujeito. A seguir vão alguns exemplos. 
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I} Força Gravitacional (também proposta por Newton em 1687}: 

onde 

Na equação (1.8} temos: 

... f·· 
p .. - -Gm·m·...2.. Jl - • J 2 ' 

ri; 

-'J 
z 

~~----_.~------~~-.y 
r, 

X 

Figura 1.2 

ro; =r.- r;= (x;- x;)x + (y;- !1;)0 + (z;- z;)i' 

r;;= [(x;- x;)2 + (y;- 11;)2 + (z;- z;)2]'/2 ' 

(1.8} 

(1.9} 

e onde G é a constante universal da gravitação ( G = 6.67 x 10-11 Nm2 / kg2 ). Em (1.8} f;; 

é o vetor unitário que aponta do corpo j para o i, r;; é a distância entre eles, e r; (i';) é o 

vetor que aponta da origem do sistema de coordenadas até o corpo i (j). 

Um caso típico da força gravitacional é o de um corpo interagindo com a terra (força 

peso = P). Esta força é representada por 

~ ~ 

P=mg, (1.10) 

onde g é o campo gravitacional da terra. Caso o corpo esteja próximo da superfície terrestre 

vem que g = lil = GM.J./R}:: 9.8 ms-2 , onde MT é a massa da terra e RT seu raio. 
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li) Força Elástica: 

Neste caso temos: 

~ k~ F=- X' (1.11) 

onde k é a constante elástica da mola (k > O), e x é a distância do corpo à posição de 

equih'brio. 

k m 

------+-+-----· 0 X 

Figura 1.3 

111) Força de Atrito Dinâmico: 

~ . ~ 
F= -bv, (1.12) 

onde b é o coeficiente de atrito ( b > O) entre o corpo e o meio (ar ou água, por exemplo), e v 
é a 'Velocidade do corpo em relação a este meio. Em geral a força de atrito dinâmica em um 

fluido é melhor representada por F= -b1v2v, onde b1 é uma constante positiva e v= ii/liil· 
Contudo a expressão linear (1.12) é muito mais fácil de ser tratada matematicamente e 

funciona razoavelmente bem com uma escolha rawável de b. 

Estas são as forças mais comuns que se encontram na mecânica. Na próxima seção 

veremos as forças que aparecem no eletromagnetismo. Juntando estas expressões de força 

com (1.7) podemos descrever o movimento dos corpos submetidos às interações usuais. 
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A formulação que apresentamos aqui é a visão clássica Newtoniana. Há outras 

formulações para descrever o movimento dos corpos no espaço, como as teorias da 

relatividade restrita e geral de Einstein. Neste livro não discutiremos estas outras 

formulações já que isto estaria além dos objetivos deste trabalho. 
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1.3 - Força de Lorentz 

Nesta seção discutiremos as forças que aparecem no eletromagnetismo. 

I) Força de Coulomb: 

Esta é a força eletrostática, obtida por Coulomb em 1785, e que descreve a força 

exercida pela carga elétrica qi em q;, quando ambas estão em repouso em relação 80 

laboratório: 

(1.13) 

onde i';j e r;j foram definidos em (1.9), ver figura 1.2, e e0 é uma constante chamada de 

permissividade do vácuo (e.= 8.85 x 10-12 C2 N-1m-2 ). 

Caso hajam N cargas em repouso interagindo com uma certa carga q. vem de (1.13) 

e do princípio de superposição de forças que a força resultante atuando em q0 é dada por 

F=q.E, (1.14) 

onde 

N • 
E~(~)='"' _'li_ roj r o -L....., 2 • 

. 471"ê0 r01· 
J=l 

(1.15) 

Em (1.15) E é conhecido como o campo elétrico obtido da lei de Coulomb. 

Esta força também pode ser obtida dos potenciais. Lagrange (1736 - 1813) havia 

introduzido a função potencial escalar na gravitação em 1777. Em 1782 Laplace (1749-

1827) obteve a equação satisfeita por este potencial no espaço livre, resultado publicado em 

1785. Em 1811 Poisson (1781 - 1840) introduziu o potencial escalar no eletromagnetismo e 

ainda obteve um resultado mais geral que o de Laplace 80 obter (1813) a equação satisfeita 

pelo potencial em regiões onde há matéria e cargas livres (Poisson, 1811 e 1813). No caso 

do eletromagnetismo o potencial de Poisson é dado por: 
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(1.16) 

Em (1.16) ,Pé conhecido como o potencial escalar elétrico no ponto r;, devido às cargM q;. 

Aplicando o gradiente em ,P atuando no ponto r0 , V .,P, podemos obter o campo elétrico 

de (1.15): 

'" .1.. • ô,P • ô,P • ô,P 
vo'l'=x-

8 
+y-

8 
+z-

8 
, 

Xo Yo Zo 
(1.17) 

(1.18) 

A prova deste fato é para ser obtida no exercício 1.1. O símbolo V é conhecido como del ou 

nabla, e é um operador vetorial. Quando atua numa grandeza escalar é conhecido como o 

gradiente desta função, e dá como resultado uma grandeza vetorial. Em geral o potencial 

vai variar de ponto para ponto no espaço. A grandeza V ,P é um vetor que aponta, em cada 

ponto do espaço, na direção de maior crescimento de ,P. CargM positiVM deixadM livres 

numa região de potencial variável vão do maior para o menor potencial (isto é, na mesma 

direção em que E aponta) e M cargas negativas movem-se em sentido contrário. 

II) Força magnética em uma carga (no Apêndice A se encontra uma discussão 

sobre as origens históricM e os significados da expressão abaixo): 

(1.19) 

Nesta expressão É é o campo magnético na posição onde se encontra a carga q0 , 

campo este gerado por únãs ou por correntes elétricM. Já V0 é a velocidade da carga q0 

em relação a um observador ou sistema de referência. Quando aplicamos esta força 

juntamente com a segunda lei de Newton na forma (1.7) então o observador ou sistema de 

referência têm de ser inerciais. Este é um dado muito importante e que é pouco enfatizado 

nos livros didáticos usuais. Aliás a maioria dos livros quando apresenta esta equação diz 

apenas o segninte: "Seja uma carga q com velocidade v num campo magnético B, então 
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a força magnética nesta carga é dada por qv x B". Ou seja, em geral não se especifica 

que velocidade é esta que aparece em (1.19). Mas obviamente velocidade é uma grandeza 

relativa, sendo uma relação entre a carga e um certo corpo em relação ao qual ela se 

move. Por isto é que para uma mesma carga podem existir várias velocidades diferentes 

simultaneamente (por exemplo, ela pode estar ao mesmo tempo parada em relação à terra, 

se aproximando de uma outra carga, se afastando com uma velocidade maior de um certo 

ímã, etc.) Infelizmente os livros didáticos usuais quando apresentam a relação ( 1.19) não 

especificam velocidade da carga em relação a quê (ou seja, não especificam claramente 

em relação a que corpo, objeto ou sistema é para ser entendida a velocidade v0 da carga 

q0 ). Diante desta indefi.nição o estudante em geral fica confuso entre várias possibilidades: 

velocidade da carga em relação ao ímã ou fio com corrente que geram B; em relação à terra 

ou laboratório; em relação a um referencial (observador) inercial qualquer; em relação ao 

campo magnético; em relação à velocidade média das cargas microscópicas (elétrons) que 

geram B; etc. Apenas quando se entra em tópicos da relatividade restrita nestes livros 

é que se percebe o significado (para o eletromagnetismo clássico que estamos analisando 

nesta seção) da velocidade que aparece em (1.19), isto é, velocidade em relação a um 

observador ou sistema de referência (e não, por exemplo, em relaçãO ao ímã ou campo · 

magnético). Exemplos desta situação inicial vaga na definição da velocidade v0 podem ser 

vistas em vários livros: (Tipler, 1984, Vol. 2a, pág. 731), (Halliday-Resmck, 1984, ~ ed., 

Vol. 3, pág. 164), (Sears, 1967, Vol. II, pág. 264), (Feynman, Leighton e Sands, 1977, 

págs. 1-2 e 13-1), (Jackson, 1975, págs. 2 e 238), (Symon, 1971, pág. 140), (Panotsky e 

Phillips, 1964, pág. 182), (Purcell, 1965, pág. 150), (Reitz e Milford, 1967, pág. 148), etc. 

O fato de a velocidade que aparece em (1.19) ser em relação a um referencial, e portanto 

variar de observador para observador, é o que gera muitas das características típicas do 

eletromagnetismo clássico que discutiremos mais para frente. 

Ainda sobre esta expressão vale lembrar que a força está dada por um produto vetorial 

entre a velocidade da carga e o campo magnético no ponto onde se encontra a carga, 

produto este definido pela regra da mão direita utilizada usualmente na análise vetorial. 

Ainda: IFI = lq.v0 B sin 61, onde 6 é o ângulo entre v0 e B . . 
Já demos em (1.15) e (1.16) os valores para o campo elétrico Coulombiano e para o 
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potencial et~calar elétrico. A-presentamos agora o valor do campo magnético gerado por 

uma corrente usual em fios metálicos, dado pela lei de Biot (1774- 1862) e Savart (1791-

1841), de 1820 (no capítulo três discutiremos mais esta expressão): 

-c- l- ,... i z- í'.j B r0 = 
4
- ljd j x - 2- • 

1r C; roj 
(1.20) 

Nesta expressão 1-'o é chamada de permeabilidade do vácuo (p 0 = 47r x 10-7 kgmC-2 ), e 

Ijd~ é um elemento de corrente do circuito Cj. O campo é então obtido integrando-se 

sobre todo o circuito fechado Cj. 

UI) Força elétrica geral: 

Em 1729 Gray havia descoberto a condução elétrica, isto é, passagem de corrente 

elétrica por metais, com isto descarregando a carga que havia sido gerada por atrito. 

Na linguagem de hoje em dia diríamos que Gray descobriu a corrente elétrica gerada 

pela descarga de cargas eletrostáticas. Isto permitiu a classificação dos materiais entre 

isolantes e condutores. Em 1780 Galvani descobriu a corrente elétrica gerada quimicamente 

(no caso dele corrente em nervos de animais} e isto permitiu que em·1792 Volta (1745-

1827) estivesse iniciando a construção das primeiras pilhas (baterias químicas). Este foi 

o início do estudo das correntes elétricas (antes disso só se pesquisava a eletrostática e a 

magnetostática, estudo dos ímãs naturais). 

Em 1826 Ohm (1787 - 1854) descobriu a lei que leva seu nome: Se uma pilha ou 

bateria química gera uma voltagem V entre seus terminais então a corrente elétrica I que 

vai circular no circuito ligado aos terminais desta pilha vai depender da resistência R do 

fio de acordo com a relação: 

(1.21) 

Em 1831 Faraday (1791 - 1867) descobriu que uma corrente é gerada não apenas 

por uma bateria mas também quando se variava o fluxo magnético sobre o circuito (por 

exemplo, aproximando ou afastando um ímã deste circuito, ou variando a intensidade de 

corrente de um circuito secundário, que gera B de acordo com (1.20)). A lei de indução de 
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Faraday pode ser expressa como (no caso em que o circuito não está ligado a uma bateria): 

(1.22) 

onde 

(1.23) 

(1.24) 

Em (1.23), fem é conhecido como ''força eletromotriz induzida," e embora tenha o 

nome de força é na realidade uma voltagem de origem não eletrostática cuja unidade .é o 

volt (IV= lkg m2C-1s-2 ). Já introduzimos em (1.23) o sinal de menos devido à regra 

de Lenz (1834) que afirma que quando se varia o fluxo sobre o circuito a corrente induzida 

é em direção tal que a força resultante sobre o circuito tende a se opor à variação do fluxo. 

Em ( 1.24) ~ M é o fluxo magnético sobre o circuito primário, onde está sendo induzidA â 

corrente, devido ao campo magnético gerado no circuito secundário. 

Em 1845 Franz Neumann (1798- 1895) introduziu pela primeira véz o potencial vetor 

magnético Ã (Neumann, 1845 e 1848 a, b ). Este é dAdo por 

Ã(r'.) = l-'o J I; d~ . 
471' JcJ r 0 ; 

(1.25) 

O campo magnético no ponto r:, pode ser obtido aplicando o rotacional em Ã: 

ii(r.) = v. x Ã, (1.26) 

O operador Vx é conhecido como rotacional, e ao atuar num campo vetorial gera um . 
novo campo vetorial. Em termos das coordenadas Cartesianas vem: 

ii(r:,) = xB. + gB, + zB, =v. x Ã 

= x(ôA, _ ôA,) + o(ôA. _ ôA,) + z(ôA, _ ôA•) 
ôy0 Ôz0 Ôz0 ÔX0 ÔXo ôy. 

(1.27) 
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A descoberta de Neumann foi perceber que a lei de Faraday podia ser expressa apenas 

em função do potencial vetor magnético que criou, sem necessitar falar de fluxo magnético, 

isto é (no capítulo 4 descreveremos em maiores detalhes a lei de Faraday e o papel de Ã): 

i~ ~ 
~M = fc A.dl, (1.28) 

d 1( aÃ) ~ fem =- dt ~M = Jc - {}t .d/. (1.29) 

No caso estático vem de (1.15) a (1.18) que existe a operação inversa, isto é, dado o 

campo elétrico de Coulomb pode-se obter a diferença de potencial (voltagem) entre dois 

pontos A e B dada por: 

v= .P(fA)- .P(rB) = L8 
E.df. (1.30) 

Comparando (1.29) com (1.30) vê-se que -8Ãf8t tem o mesmo papel que um campo 

elétrico usual já que ambos geram uma voltagem, voltagem esta que pode ocasionar uma 

corrente. 

A partir do trabalho de Neumann a teoria de circuitos foi generalizada para incluir os 

efeitos de auto-indutância. Os principais trabalhos nesta direção foram feitos por Kirchhoff 

(1824 - 1887) no período 1848 - 57 (Kirchhoff, 1850, 1857 a, b; Rosenfeld, 1973); W. 

Thomson (1824 - 1907), também conhecido como Lord Kelvin, juntamente com Stokes 

no período 1853 - 4; e Heaviside (1850 - 1925), em 1876. Kirchhoff já em 1857 escrevia 

a lei de Ohm de maneira geral, da forma como a conhecemos hoje em dia, incluindo as 

influências dos potenciais escalar elétrico e vetor magnético, isto é (Kirchhoff, 1957 a), 
' 

j = -u(V,P + 8Ã/8t), onde j é a densidade de corrente. Se formos escrever esta equação 

em tennos de um campo elétrico generalizado vem: 

(1.31) 

Pode-se pensar que esta é uma combinação de (1.18), (1,30) e (1.29). A força elétrica geral 

é então dada por F= q0 E, com E dado por (1.31 ). 
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IV) Força de Lorentz: 

No eletromagnetismo clássico a expressão geral para a força eletromagnética sobre uma 

carga é conhecida como força de Lorentz. Ela engloba as influências elétricas e magnéticas 

e se escreve como 

(1.32) 

onde o campo elétrico E é dado por (1.31) e o campo magnético B por (1.26). Juntando­

se esta expressão com a segunda lei de Newton, (1. 7), pode-se em prindpio descrever 

o movimento de uma carga interagindo com campos elétricos e magnéticos quaisquer. 

Novamente a velocidade Vo que aparece em (1.32) é a velocidade da carga q0 em relação a 

um referencial ou observador. Ou seja, não é a velocidade em relação ao campo magnético, 

e nem em relação ao ímã ou fio que geram B. 
A expressão (1.32) surgiu pela primeira vez em dois trabalhos fundamentais de H. 

A. Lorentz (1853 - 1928), físico teórico holandês, publicados em 1892 e 1895 (Lorentz, 

1892 e 1895). Nestes trabalhos Lorentz deu uma estrutura granular núcroscópica para 

a formulação do eletromagnetismo de Maxwell, que era todo baseado no contínuo. Isto 

é, Lorentz passou a descrever as fontes dos campos como sendo entidades corpusculares 

discretas, cargas e elementos .de corrente. 

Vamos agora fazer uma primeira análise da força de Lorentz (uma discussão mais 

aprofundada é apresentada no capítulo 5). Em primeiro lugar observamos que o potencial 

escalar elétrico, e o campo elétrico de Coulomb, (1.16) e (1.18), dependem apenas das 

distâncias entre as cargas interagentes, mas não de suas velocidades. Já o campo magnético 

B de (1.20) depende além disto da corrente elétrica. Como corrente é carga em movimento 
~ 

vem que B depende da velocidade das cargas fontes (isto é, cargas que geram os campos) e 

das distâncias entre as cargas interagentes. Já o potencial vetor magnético está diretamente 

ligado com B por (1.26) e então também depende da velocidade das cargas fontes e das 

distâncias entre as cargas interagentes. 

Vemos então que há três componentes na força de Lorentz (1.32): (I) A força 

Coulombiana -q. V 0 </>, que depende apenas das posições relativas entre cargas em repouso. 

(11) A força magnética, q0 v0 x B, que depende da velocidade v0 da carga de teste (isto é, 
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da carga que sente a força) e da velocidade das cargas fontes (isto é, das cargas que geram 

B), pois ii é diretamente proporcional à corrente elétrica e esta é diretamente proporcional 

à velocidade. (UI) A força de indução, -q0 fJÃj&t, que tem uma componente dependente 

da aceleração das cargas fontes (Ã ligado com ii, que é proporcional à velocidade, e nesta 

componente da força aparece 8Ãf&t), mas que não depende nem da velocidade nem da 

aceleração da carga de teste. A outra componente da força de indução depende apenas da 

velocidade das cargas que geram ii. Isto pode ser visto lembrando que a indução ocorre 

não apenas quando a intensidade da corrente muda (caso acima, aceleração diferente de 

zero), mas também quando a intensidade da corrente é constante (ã = O) e o fluxo de ii 
sobre o outro circuito muda no tempo, como quando um ímã se aproxima ou se afasta do 

circuito primário. Neste segundo caso para haver indução é necessário ter É e isto mostra 

que esta componente vai depender da velocidade. 

No capítulo 5 faremos uma comparação da força de Lorentz com a força de Weber. 
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1.4 - Equações de Maxwell 

Para resolver IKl6SO problema inicial, que é o de descrever o movimento de cargas no 

espaço em relação uma às outras, o primeiro passo já está dsdo. Isto é, temos a equação 

de movimento (1. 7) e a força eletromagnética correspondente, (1.32). Logo, se estamos 

num sistema de coordenadas inercial e uma partéula (ponto material) de carga q e massa 

m se move com velocidade v e aceleração ã em relação a este referencial inercial, numa 

região onde há um .campo elétrico E e um campo magnético B, vem que seu movimento é 

descrito pela equação 

qE + qv X jj = mã . (1.33) 

Obviamente os campos E e B que aparecem nesta equação não são aqueles gerados 

pela própria car&a q, mas sim gerados por outras cargas e distribuições de correntes, que 

são chamados de fontes de E e B. Para resolver o problema completo de forma auto­

consistente (isto é, descrever o movimento de um conjunto de cart;as interagindo entre 

si sem a presença de campos eletromagnéticos externos) precisamos saber como as fontes 

geram os campos. Ou seja, dado uma distribuição de cargas e de correntes, obter os campos 

E e B gerados por este sistema. E é exatamente esta a função das equações de Maxwell. 

Seja então puma densidade de carga (as unidades de p são Cm -~, isto é, Coulombs por 

metro cúbico), e J uma densidade de corrente (suas unidades sendo Am-2 = Cs-1m-2 , 

isto é, Amperes por metro quadrado). A quantidade de carga interna a um volume V e a 

quantidade de corrente que atravessa uma superfície S são dadas respectivamente por 

Q=JffpdV, (1.34) 

v 

I= lsf f.dã. (1.35) 

Nestas expressões dV é um elemento de volume e dã é um elemento de área vetorial, 

sendo sempre perpendicular à. superfície S em cada ponto. Por convenção vem que se 

S for uma superfície fechada, dã apontará para fora e a integral dupla sobre toda a 
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superficie é representada por J. Em (1.35) I é obtido por um produto escalar entre 

j e dii, produto este definido pelas regras usuais da análise vetorial. Vale lembrar que p, 

Q e I são grandezas escalares e que j é uma grandeza vetorial. Por convenção vem que j 

aponta em direção contrária ao movimento das cargas negativas (usualmente elétrons). Se 

numa região do espaço temos cargas positivas e negativas em movimento, com velocidades 

v+ e v_' respectivamente, então temos: 

(1.36) 

Nesta equação P+ (p-) é a densidade de cargas positivas (negativas), que se move com 

velocidade v+ (v-). Muitas vezes temos apenas correntes macroscopicamente neutras 

(como no caso da corrente em um fio metálico comum ou em um plasma gasoso) tal que 

P- = -P+· Nestes casos j = P+(i!+- iJ_). No caso de correntes usuais em condutores 

metálicos apenas os elétrons se movem e então j = p_i}_ = -p+V- . . Nas equações de 

Maxwell p e j são as fontes básicas que geram E e B, e então achamos neceosário fazer 

este preâmbulo para esclarecer o que são cada uma destas fontes. 

As equações de Maxwell são usualmente apresentadas de duas maneiras: forma 

diferencial e forma integral. Antes de apresentá-las temos de falar um pouco mais da 

notação vetorial e de seu significado. Já introduzimos o gradiente de uma função escalar, 

(1.17), e o rotacional de uma função vetorial, (1.26) e (1.27). Vai aqui o divergente de uma 

função vetorial, que dá como resultado uma função escalar: 

G=!iG,+fiG,+zG,, (1.37) 

H =,.., 0~ = éJG, éJG• éJG, 
- v· - éJx + éJy + {)z • (1.38) 

Vamos indicar o significado físico e geométrico de V 'f' por algumas figuras: 
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o) 

Regilio onde 'f 
é uma constante 

b) 

Figura 1.4 

c) 

Cf'3 < "1'2 <tp, 
<p•<p(r) 

No caso do divergente e do rotacional é mais fácil ver o significado observando os 

segnintes teoremas, válidos para um campo vetorial G = G(z,y,z) arbitrário, desde que 

razoavelmente bem comportado: 

f f f('\I.G)dV = f1 G.dã= ~a. 
v s 

(1.39) 

(1.40) 

O primeiro é conhecido como teorema de Gauss ou teorema da divergência. Como já foi 

afirmado anteriormente, o símbolo J indica que estamos integrando sobre toda a sup.rlície 

fechada que engloba V. O símbolo ~a usualmente indica o fluxo da grandeza G através 

de uma certa superfície S. Do teorema de Gauss vemos então que o divergente de uma 

grandeza está estreitamente ligado com a quantidade desta grandeza que atravessa uma 

certa superfície S, isto é, com seu fluxo. Vão a segnir figuras de grandezas vetoriais radiais 

e tangenciais mostrando onde o fluxo é ou não nulo. 
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o) 

2 

G radial 

G = Kr/r2 

b) 

-
G tangencial 

G = K<{;fp 

Figura 1.5 

(superfícies fechadas) 

Estando as superfícies 1, 2, 3 e .4 representadas na figura vem: ~1 > O, w2 = w3 = 
w4 = O. No caso da superfície fechada 1, G está sempre apontando para fora e portanto 

é sempre quase paralelo a dã. Já na superfície fechada 2 as linhas de G entram na parte 

mais perto do centro e saem na parte mais afastada, tal que toda linha que entra acaba 

saindo e o fiuxo líquido é então nulo. Nas superfícies fechadas 3 e 4 as linhas entram do 

lado direito e saem do lado esquerdo tal que novamente o fiuxo líquido é nulo. 

O segundo teorema, {1.40), é conhecido como teorema de Stokes. Neste caso a 

superfície S não é fechada e C é a linha mais externa que contorna S. A integral f G.di 

é uma integral de linha sobre toda a linha fechada C. O elemento de área dã é normal 

à superfície S em cada ponto e está relacionado com di pela regra da mão direita, por 

convenção. O elemento de comprimento di é sempre paralelo (tangencial) a C em cada 
~ 

ponto. O símbolo Cc usualmente indica a circulação da grandeza G através de uma certa 

linha C. Na figura 1.6 abaixo temos C1 = C2 = C4 = O e C3 > O ( < O) se fizermos a 

circulação no sentido anti-horário (horário). 
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ol 

2 

-
G tangencial 

Figura 1.6 

(superfícies abertas) 

~ 

G = K,P/P 

~ ~ 

Este último resultado pode ser visto observando que d/ é quase paralelo a G, apontando 

sempre na mesma direção em relação a G, em todos os pontos de Ca. Já nas curvas fechadas - - - - . 1 e 2, d/ é em geral ortogonal a G, e então G.dl = O, enquanto que na curva fechada 4, 

e integrando no sentido horário, vem que di é anti-paralelo a G na parte da curva mais 

afastada do centro e é quase sempre quase paralelo a G na parte mais próxima, tal que as 

duas componentes juntas se cancelam. 

Agora que já falamos das fontes e dos significados das grandezas vetoriais, podemos 

finalmente apresentar as equações de Ma.xwell. Inicialmente vamos apresentá-las na forma 

diferencial, supondo as fontes e os campos no vácuo. Todas as grandezas são funções 

da posição e do tempo: 'P = <p(x, y, z, t), G = xG.(x, y, z, t) + yG,(x, y, z, t) + 
.iG,(x, y, z, t). As equações de Ma.xwell são então: 

~ p 
'il·E=-, 

e. 
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jj - 1 ôE 
V X = p.0 J + éJ ôt , {1.42) 

{1.43) 

{1.44) 

Em {1.42) a constance c é dada por {e0 p. 0 )-
112 e tem o mesmo valor que a velocidade 

da luz no vácuo. Como veremos no próximo capítulo, foi Weber quem introduziu pela 

primeira vez esta grandeza no eletromagnetismo, em 1846, e foi ele também o primeiro a 

medi-la experimentalmente, em 1856, juntamente com seu colaborador Kohlrausch. 

Alguns comentários sobre estas equações: (1.41) é conhecida como lei ou equação de 

Gauss, e ela é essencialmente equivalente à força de Coulomb, {1.13) a {1.18), e mostramos 

isto na seção 1.5. A segunda equação é conhecida como lei circuitai. de Ampere, e o que 

Maxwell acrescentou em relação ao trabalho de Ampere foi a introdução da densidade 

de corrente de deslocamento, E0 ÔEfôt. Este termo também é cbamade de corrente, 

assim como J, já que apesar de não indicar um transporte líquido de cargas elétricas, 

foi observado que um campo elétrico variável gera um campo magnético, e esta é uma das 

propriedades fundamentais das correntes elétricas usuais. A terceira equação representa a 

observação experimental de que não se consegue separar espacialmente os pólos norte e sul 

de nenhum ímã ou corrente. A quarta e última equação é conhecida como lei de Faraday. 

Faraday descobriu a indução eletromagnética em 1831. Foram Franz Neumann (em 1845) 

e Weber (em 1846) os primeiros a colocar a lei de Faraday em forma matemática. Este é 

o assunto do capítulo 4. Os conhecimentos matemáticos de Faraday sempre foram muito 

elementares, sendo ele essencialmente um excelente físico experimental. 

Vemos então que aquilo que se chama de equações de Maxwell são de fato leis devidas 

a outros pesquiaadores e que já eram conhecidas e usadas na época de Maxwell. O papel de 

Maxwell foi perceber que este conjunto de equações formava um todo coerente, e introduzir 

a corrente de deslocamento. Este último feito foi realmente sua grande descoberta, já que 

a corrente de deslocamento é fundamental para se obter as ondas eletromagnéticas a partir 
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das equações de Ma.xwell. Com isto se pôde unificar a óptica com o eletromagnetismo, 
' 

identificando a luz como sendo uma radiação eletromagnética. Ma.xwell introduziu este 

termo (a corrente de deslocamento) para que este conjunto de equações ficasse compatível 

eom a equac;ã.o de continuidade para cargM, que também é conhecida como a equação de 

conservação de cargas, e que é dada por: 

8p 
ât +'V'.(pü)=O. (1.45) 

Para ver isto vamos apresentar dois teoremas básicos da análise vetorial, válidos para 
~ 

quaisquer funções 'f' e G razoavelmente bem comportadas: 

V.(V X G) =o' (1.46) 

Vx(V'v>)=O. (1.47) . 

Aplicando 8/ât na Eq. (1.41), invertendo a ordem de derivação, usando (1.42) e (1.46) 

se obtem (1.45), lembrando que J = pv. Ou seja, para obtermos (1.45) foi fundamental o 

termo da corrente de deslocamento em (1.42). 

Apresentamos agora as equações de Ma.xwell na forma integral, obtidas a partir de 

(1.41) a (1.44) e usando (1.39) e (1.40), ver exercício 1.3: 

fj E.dã = ~ = e1. f f f pdV ' (1.48) 

s v 

1 ~ ~ 1 d k B.dl = p. 0 l + c2 d.t I) E 

'f~~ 1dff~~ = P.o Js J.da + c2 dt Js E.da' (1.49) 

B.da=O, fj ~ ~ 
(1.50) 

(1.51) 
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Para se obter "" equações de ond!IB eletromagnéticas basta aplicar o rotacional (V x) 

em ambos os lados de (1.42) e (1.44), e usar a identidade vetorial 

v X (V X G) = V(V.G)- (V.V)G. (1.52) 

No CIIBO mais simples onde não há fontes na região de interesse (p = O, f= O) se 

obtem (ver também o exercício 1.5 para o caso geral): 

(1.53) 

(1.54) 

O operador V. V é conhecido como o Laplaciano e algumas vezes ele é escrito como . 

V.V = V2 =A, e é dado por: 

(1.55) 

Estas equações descrevem as ondas eletromagnéticas obtid!IB "pelas equações de 

Maxwell. 

Antes de encerrar esta seção vamos falar um pouco da questão dos potenciais </> e 
~ - -A. Como vimos, as equações de Maxwell dependem apenas de E e B, e também a força 

de Lorentz (L32) só depende de E e fi. Isto indica que estes são os campos reais do 

eletromagnetismo clássico, isto é, aqueles que influenciam na força e no movimento das 

C:argas. Como vimos em (1.26) e (1.31), podemos expressar E e Bem termos de </>e Ã. 

Como o gradiente de uma constante é zero, podemos adicionar ou subtrair uma constante a 

</> sem alterar o valor do campo elétrico ou da força, e da mesma forma podemos adicionar 

a Ã o gradiente de uma função escalar <p sem alterar o valor de ii (lembre-se de (1.47)). 

Isto permite uma certa liberdade na escolha de Ã e </>, e é a isto que se dá o nome de calibre 

ou de gauge. Damos a seguir os calibres de Coulomb e de Lorentz, dados pela definição de 

V .A: 

calibre de Coulomb : V.Ã = O , (1.56) 
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. ~ 1/Jt/> 
calibre de Lorentz : V .A = -c2 8t . (1.57) 

Vale ressaltar que tanto num calibre quanto no outro a força de Lorentz é exatamente a 

mesma 

Usando-se estes calibres e as equações de Maxwell pode-se obter (ver exercício 1.6) 

equações de onda também para</> e À. No caso do calibre de Coulomb vem 

(1.58) 

(
2 182 )~ ~ 1 8</> V--- A=-p.J+-V-. c2 1Jt2 c2 8t (1.59) 

A primeira destas equações é conhecida como equação de Poisson. 

Já no calibre de Lorentz vem 

(1.60) 

V--- A=-" J (
2 11J2)~ ~ 

c2 1Jt2 ro • (1.61) 

Numa região sem cargas e sem correntes vem de (1.60), (1.61), (1.53) e (1.54) que todas 

as componentes retangulares de E, B, À, e</>, satisfazem à mesma equação. 

Embora as equações (1.58) a (1.61) sejam diferentes, e portanto dêem soluções 

diferentes, isto não é problema já que no eletromagnetismo clássico os campos reais são E 
e B, e não </> e À. E tanto no calibre de Coulomb quanto no de Lorentz vem que E e B 
satisfazem às mesmas equações, (1.53) e (1.54), ou às equações gerais do exercício 1.5. 

Nos exercícios 1.7 a 1.8 indica-se como obter as equações de Gauss, (1.41), e de Faraday 

(1.44), a partir do campo elétrico que aparece na força de Lorentz. A derivação das leis 

de Ampere, (1.42), e dos monopólos magnético8, (1.43), é assunto do terceiro capítulo. 

De maneira extremamente reduzida e simplificada podemos dizer que a segunda 

lei de Newton acoplada à força de Lorentz, juntamente com as equações de Maxwell 

e as equações constitutivas do meio constituem o cerne do eletromagnetismo clássico. 
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Antes de prosseguirmos vamos fazer alguns comentários importantes. Como já. fa)amos 

anteriormente, as equações de Ma.xwell são independentes da força de Lorentz. Isto significa 

que as equações . de Maxwell poderiam continuar válidas mesmo que tivéssemos uma lei 

de força para cargas elétricas diferente da força de Lorentz. Um outro dado é que as 

equações de Ma.xwell são independentes entre si, no sentido de que não se consegue, por 

exemplo, derivar a lei de Faraday da lei circuitai de Ampêre, e vice-versa (ver po..-ém o 

exercício 1.9). Contando cada equação vetorial como uma equação, temos então que o 

eletromagnetismo clássico é composto de cinco equações independentes (Newton-Lo~tz 

msis as quatro equações de Maxwell), além das relações constitutivas do meio. 

35 



l.S - Derivação da Lei de Gauss 

Nesta seção vamos derivar a lei de Gauss a partir da força de Coulomb, (1.13}. Esta 

força no caso da interação de q0 com outras N cargas pode ser escrita como ( 1.14 ), com 

o campo elétrico dado por (1.15). De (1.15) vemos que o campo elétrico de cada carga 

q;, E;= q;í'.;/(47ré0r~;), aponta radialmente a partir desta carga e cai com o quadrado 

da distância. Para chegar na lei de Gauss vamos supor inicialmente uma única carga q;'e 

uma superfície fechada S. como indicado na figura 1.7. 

s. 

Figura 1.7 

Seja dã. um elemento de área desta superfície localizado no ponto r. e apontando 

sempre para fora, por convenção. É fácil ver que 

E~. d~ - qj cose.,d 
J• Q 0 - 2 a 0 , 

411"e: 0 r oj 
(1.62) 

onde e., é o ângulo entre f •i e dã •. Como E; aponta radialmente a partir de q;' vem que 

cos e.;da. = r~;d!l.;, onde d!l.; é o elemento de ângulo esférico subentendidopor da. na 

posição de q; (ver figura 1. 7). Logo 

(1.63) 
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Integrando E;.dão sobre toda a superfície s. é fácil ver que Js. dí2.; = 4.- se q; estiver 

dentro da superfície s., e J5 d!l.; = O se q; estiver fora da superfície s.. Usando o . ' 
princípio da superposição para somar. a contribuição das N cargas vem então 

f1 ~ ~ 1 m 1 fff E.da. = -L q; = -. pdV0 , 

S., Eo j=l Eo V. 
• 

(1.64) 

onde a somatória í:j:1 se esten~e ~p~nas às cargas que estão dentro de S,_, e ~, últi~ 

igualdade é obtida supondo-se uma distribuição contínua de cargas, q -+ pdV, sendo V. o 

volume englobado por S •. E esta é a forma integral da lei de Gauss, Eq. (1.48). 

Para. se chegar na forma diferencial da lei de Gauss, (1.41), basta. usar o teorema de 

Gauss, (1.39). Com isto vem 

f f f(v.E-;.)av.=o. (1.65) 

v. 

Como esta equação é válida. qualquer que seja o volume V. vem que o integrando tem de 

ser nulo, e então chegamos a (1.41 ). 

Uma outra prova usando propriedades ma.is avançadas do cálculo vetorial pode ser 

obtida através do potencial de Poisson, (1.16), além de (1.18) e (1.55): 

(1.66) 

Como mostramos na seção 3.5, há um resultado importante da análise vetorial que 

diz que 

(1.67) 

onde 6( f'. - fi) é conhecida como a função delta de Dirac. Suas propriedades: 

(1.68) 
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f f f f(f'.,)ó(r.,-rj)dV., 
v, 

{ 
= /(fj) se v. c:ontem r; ' 
= O se V., não c:ontem rj . } (1.69) 

Aplicando (1.67) em (1.66) se chega em (1.64) ou (1.65), desde que se use também " 

te<Jrema de Gauss (1.39). E daí se chega na forma diferencial da lei de Gauss, CQD. 
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1.6 - Exercícios 

1.1 - Mostre q1Je -V .,P, com ,P e V otP dados por (1.16) e (1.17), é o mesmo que E 
dado por (1.18). 

1.2 - Refaça explicitamente todas as contas indicadas no texto para mostrar que as 

equações de Maxwell (1.41) e (1.42) são compatíveis com a equação de continuidade, {1.45). 

Ou seja, derive (1.45) a partir de {1.41) e {1.42). 

1.3 - R.eobtenha explicitamente as equações de Maxwell na forma integral, ( 1.48) a 

(1.51), a partir de (1.41) a (1.44), usando os teoremas de Gauss e Stokes, (1.39) e (1.40), 

e usando também as identidades vetoriais (1.46) e (1.47). 

1.4- (A) Prove as relações (1.46) e (1.47) usando as expressões de V<p, V.G e V x G 
em termos das componentes dadas por {1.17), (1.27) e (1.38). Para isto suponha funções 

bem comportadas tal que a ordem de derivação possa ser invertida. 

(B) Use (1.17) e (1.38) para mostrar que 

Como já foi dito, esta expressão é conhecida como o Laplaciano de <p. 

1.5 - O objetivo deste exercício é obter as equàções de onda no caso geral, válidas 

também numa região onde há cargas e correntes. Para isto vai-se usar a identidade vetorial 

(1.52). Nesta expressão o Laplaciano é dado por (1.55). Suponha que os campos E e B 
são funções bem comportadas tal que se possa inverter as ordens de derivação. 

(A) Aplique o rotacional de ambos os lados da lei de Fara.day, (1.44), use a identidade 

vetorial acima, a lei de Gauss, (1.41), e a lei circuital de Ampere, (1.42) para Óbter a 

equação de onda 
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( 
2 1 {fl ) ~ 1 ôj 

V - c;2 ôt2 E = E o V p + P.o ôt . 

(B) Aplique o rotacional de ambos os lados da lei circuital de Ampêre, (1.42}, use a 

identidade vetorial acima, a equação (1.43), e a lei de Faraday, (1.44), para obter a equação 

de onda 

(
2 1ô2)~ ~ 

V - c2 ôt2 B = -p..V X J. 

1.6 - Agora podemos obter as equações satisfeitas por </> e Ã. 

(A) Aplique as expressões para E e Bem termos de</> e Ã, dadas por (1.31) e (1.26), 

nas equações de Maxwell (1.41) a (1.44). Observe que no caso de (1.43) e (1.44) se obtem 

simplesmente a identidade O = O. 

(B) Use então o calibre de Coulomb, (1.56), para chegar em (1.58) e (1.59). 

(C) Em vez do calibre de Coulomb use agora o calibre de Lorentz, (1.57), no resultado 

obtido na letra (A), para chegar em (1.60) e (1.61). 

1. 7- O campo elétrico que aparece na força de Faraday é dado em termos dos potenciais 

em (1.31). 

(A) Obtenha dai 

... 2 ô .. 
V.E =-V</>- ôt(V.A). 

(B) Use o calibre de Coulomb, (1.56), e sua correspondente equação de onda, (1.58) e 

(1.59), para chegar em (1.41). 

(C) Use agora o calibre de Lorentz, (1.57), e sua correspondente equação de onda, 

(1.60) e (1.61), no resultado da letra (A), para chegar em (1.41). 

1.8 - Derivação da lei de Faraday a partir do campo elétrico que aparece na força de 

Lorentz. 

(A) Aplique o rotacional nos dois lados da expressão para E em (1.31). 
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(B) Use (1.47) e (1.26) para chegar em (1.44). 

Este exercício ilustra o fato de que apenas a componente ôÃ/ât do campo elétrico é 

telewnte para a lei de Faraday. 

1.9- Suponha que as funções E e fi sejam bem comportadas tal que se possa inverter 

a ..-dem de derivação. 

(A) Aplique o divergente de ambos os lados da lei de Faraday, (1.44), e use (1.46) 

para concluir que ô(V.B)/ât =o, isto é, que v.fi não depende explicitamente do tempo. 

(B) Faça agora a hipótese adicional (isto não vem de (1.41), (1.42) nem (1.44)) de 

que em algum momento do passado V .fi = O em todos os pontos do espaço. Com esta 

hip6t.ese adicional se chega então em (1.43). 

(C) Aplique o divergente de ambos os lados de (1.42) e a relação (1.46) para concluir 

que 

(O) Use agora a equação de continuidade (que não pode ser derivada apenas de (1.42) 

a(1.44)), Eq. ·(1.45), mais o fato de que f= ptjpara derivar a lei de Gauss (1.41), a menos 

de uma constante que pode ser fixada como zero. 

·Este exercício ilustra que só se pode derivar alguma das equações de Maxwell a partir 

das outras três caso se façam outras hipóteses adicionais. 
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2) Força e Energia Potencial de Weber 

2.1 - Força de Weber 

Neste capítulo vamos discutir a força de Weber e algumas de suas principais. 

características. Para uma biografia de Weber ver, por exemplo; (Wiederkehr, 1967; Werner 

e Werner, 1976; Woodruff, 1976 e. Assis, 1991 b). Os principais trabalhos de Weber estão 

listados na bibliografia ao fim deste livro em seguida à palavra "Weher." 

Wilhelm Eduard Weber (1804 - 1891) foi um grande físico experimental alemão 

que deu contribuições fundamentais para o eletromagnetismo, como a inVenção -~-do 

eletrodinamômetro (aparelho para medir a força entre dois fios com corrente elétrica). 

Criou, juntamente com Gauss, o primeiro telégrafo operacional do mundo (1833).· 

Estabeleceu, também com Gauss, um sistema de medidas absoluto para grandezas 

eletromagnéticas (campo magnético, corrente elétrica, resistência, etc.) Durante alguns 

anos a unidade de corrente elétrica foi chamada de Weber em reconhecimento ao seu 

trabalho experimental, até que em 1881 resolveu-se chamar de Amp~re a esta medida, n~ 

congresso internacional realizado em Paris. Desde 1935 que se designa por Weber à unidade 
- ·:·, 

de fluxo magnético no sistema internacional de utúdades. Trabalhou em Gottingen, onde foi 

colega de Gauss, que também era professor na mesma universidade, e chegou a ser professor 

na universidade de Leipzig no período entre 1843 e 1849, que é quando desenvolveu seus 

principais trabalhos te6ricos. É durante este período, mais especificamente em 1846, que 

desenvolve e publica sua lei de força entre duas cargas elétricas (Weber, 1846 e 1848). Para 

estas e outras inforrnaçôes ver também: (O'Rahilly,' 1965, Cap. 11; Whittaker, 1973, pág. 

201; Wise, 1981; Harman, 1982, págs. 32, 96, 103 a 107; Atherton, 1989; e Jungnickel e 

McCorrnmach, 1986). 

A força de Weber que uma carga qj exerce numa carga q; é dada por 

(2.1) 

onde 
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(2.2) 

. (2.3) 

e onde r;; e f;; são dados por (1.9). No próximo capítulo veremos de onde veio esta 

força, ou seja, para que se pudesse derivar de uma única lei os resultados de Coulomb 

e de. Ampêre. Como a força de Coulomb depende de unidades eletrostáticas e a de 

Ampêre de unidades eletrodinâmicas, a constante c que aparece em (2.1) é a razão 

entre as unidades eletromagnéticas e eletrostáticas de carga. Seu valor foi primeiro 

obtido experimentalmente por Weber e Kohlrausch em 1856, e o valor que obtiveram foi 

3.1 X 108 m/ s, que era essencialmente, dentro dos erros experimentais, o valor da velocidade 

da luz no vácuo (Kohlrausch e Weber, 1857; Rosenfeld, 1956; e Kirchner, 1957). Esta foi 

a primei_ra evidência forte para a existência de uma conexão profunda e precisa entre o 

eletromagnetismo e a óptica. Maxwell utilizou este valor obtido por Weber e Kohlrausch 

em seu Tratado (A Treati.oe on Electricity and Magneti•m) para justificar sua própria teoria 

eletromagnética da luz (ver Maxwell, 1954, Vol. 2, págs. 416 e 436): Lembrando então 

que se vai obter a lei de Ampere a partir da lei de Weber, e estando ambas no sistema 

internacional de unidades, vem que se pode colocar c= (p. 0 E0 )-
112 em (2.1). Pode-se dizer 

que Weber e Kohlrausch foram os primeiros a medir (p. 0 E0 )-
112 • 

As principais propriedades da força de Weber são: 

(A) Ela segue a terceira lei de Newton (a de ação e reação) na forma forte, qualquer 

que seja o estado de movimento das cargas. Isto é, a força está sempre ao longo da reta 

que \Ule as duas cargas e Ê'ji = -Fi i. 
(B) A lei de Coulomb é um caso particular da lei de Weber, obtida no caso em que 

as cargas estão paradas uma em relação à outra. Ou seja, quando rij = O e f;j = O vem 

que (2.1) se reduz a (1.13). Como a primeira das equações de Maxwell, a lei de Gauss, 

essencialmente nada mais é do que a lei de Coulomb escrita de forma diferencial (ver seção 

1.5), vem que com a força de Weber pode-se derivar a primeira das equações de Maxwell, 

juntamente com a primeira parte da força de Lorentz, -q\14> em (1.32). 
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(C) A equação de movimento é obtida juntando-se (2.1) com a segunda lei de Newton, 

(1. 7). 

(D) A velocidade e aceleração que aparecem em (2.1) são apenas as velocidades e 

acelerações radiais entre as duas cargas, como dado por (2.2) e (2.3). Isto nos leva à 

última e fundamental propriedade da lei de Weber: 

(E) Na lei de Weber só aparecem grandezas relacionais para especificar a posição e o 

movimento das cargas. Isto é, as únicas grandezas que vão interessar para saber a força são 

fi- fj, lfi- fi i, dr;;/dt, e á2r;;/dt2 • Isto significa que cada termo da força tem o mesmo 

valor para todo.s os observadores, mesmo se os observadores forem não inerciais. O vetor 

fi que liga um observador O à carga i pode ser c:liferente de um vetor r;' que liga a mesma 

carga a um outro observador O'. Mas o vetor fi; = fi - fj que liga a carga j à· carga i é 

O OI • t ' ~· ~ 0 vai • " o mesmo tanto para quanto para , 1s o e, r;; =r;;. mesmo e para r;;, r 1; e r;;. 

Por isso se diz que estas são grandezas relacionais, que dependem apenas das relações entre 

os corpos que estão interagindo, mas que não dependem de quem está observando. Como 

se mostra no exercício 2.2, as grandezas relacionais são fib r;b T;;, i-;; e f;;. Exemplos de 

etc. 

Foi dada uma ênfase maior neste último aspecto já que a lei de Weber é uma das únicas 

formulações já propostas para abranger os fenômenos elétricos e magnéticos que tem esta 

propriedade. As outras formulações como as de Gauss, lliemann, Clausius, Lorentz, etc., 

ou dependem da velocidade da carga em relação ao observador, ou da velocidade da carga 

em relação a um éter. V amos ver um exemplo disto no caso da força de Lorentz. Se 

numa certa região do espaço há apenas um campo magnético estacionário (gerado por 

exemplo por um ímã em repouso em relação a um referencial inercial O), e um observador 

em repouso neste mesmo referencial vê uma carga q se movendo com velocidade V nesta 

região do espaço, então ele verá a carga sofrer uma força magnética dada por (1.19) ou pelo 

último termo de (1.32). Para um outro observador O' que neste mesmo instante está se 

movendo com velocidade constante v em relação a O (sendo portanto um outro observador 

inercial) não vai haver nenhuma força magnética sobre a carga já que em relação a ele a 

carga está instantaneamente parada (v ' = O) e então qv ' x jj> = O para ele. Vemos com 
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isto que a força magnética no eletromagnetismo clássico pode ser distinta .J,llesmo para dois 

observadores inerciais. Voltaremos a discutir este assunto em mais detalhes no capítulo 5. 

Usando-se (2.2) e (2.3) pode-se colocar a força (2.1) na forma (ver exer.cícios 2.1 e 

2.2): 

"' q;q; r;; [1 1 (~ ~ 3(. ~ )2 ~ ~ )] 
.l'Ji = 41l"êo 'ii; + c2 v;; ·v;; - 2 r;; ·v;; +r;; ~ a1; , (2.4) 

onde 

(2.5) 

(2.6) 

Chamamos a atenção para os exercícios 2.1 e 2.2 pois neles se mostra que nem sempre 

r;; é ignal a ( ii';; · ii';; )1 12 • Além disto se mostra que r;; é uma grandeza relacional enquanto 

que ( ii';; • ii';; )112 pode variar de observador para observador. Em particular no exercício 

2.1 se mostra que 

. dr;; • ~ 
r··= -r··· v·· IJ - dt - IJ IJ ' (2.7) 

• ~ 1 [~ ~ (. ~ )2 ~ ~ 1 r;; s dt2 ri; =-v;;· v;;- ri;· v;; +ri;· a;; . 
Tij 

(2.8) 
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2.2 - Energia Potencial de Weber 

A lei de Weber foi o primeiro exemplo histórico que surgiu de uma força entre cargas 

que dependia não apenas da distância entre elas mas também de suas velocidades. Isto 

gerou críticas por parte de alguns cientistas da época que achavam que esta força era 

inconsistente com o princípio de conservação da energia. Foi então que dois anos depois, 

em 1848 (Weber, 1848), Weber apresentou sua energia potencial generalizada definida por: 

u = q,q, ..!.... (1 - rl, ) . 
411"€0 Tij 2c2 

(2.9) 

O primeiro termo desta energia é a energia potencial Coulombiana usual, enquanto 

que o segundo termo é uma mistura de energia cinética e potencial já que depende não só 

da distância entre as cargas mas também de suas velocidades mútuas. Este também foi 

o primeiro exemplo que surgiu na ciência de uma energia potencial generalizada. Assim 

como no caso da energia. potencial Coulombiana., pode-se pensar em U de (2.9) como sendo 

a energia gasta para formar o sistema. Isto é, U é a energia que tem de ser dispendida para 

trazer qi e qi desde o infinito (onde se considera que estão em repouso e a uma distância 

infinita uma da outra) até chegarem à separação rij com velocidade relativa rij· Esta 

energia. é gasta contra. a força. de Weber (2.1) atuando entre as duas cargas. 

A maneira. mais simples de derivar a força. desta energia potencial é fazendo 

(2.10) 

A forma detalhada. de chegar em (2.1) a. partir de (2.10) está indicada. no exercício 2.3. 

Uma outra maneira de obter a força a partir do potencial é indicada na próxima seção. 
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2.3 - Conservação do Momento Linear, do Momento Angular e da Energia 

Um dos aspectQS de maior importância na física clássica são as três leis básicas de 

conservação: energia, momento linear e angular. Vamos aqui mostrar que a lei de Weber, 

juntamente com sua energia generalizada, satisfaz a estas três leis capitais. Inicialmente 

vamos tratar do momento linear. 

A conservação do momento linear segue diretamente do fato de que a força de Weber 

satisfaz ao princípio de ação e reação. Este fato independe até mesmo da forma da força, 

bastando que valha Fi; = -F;h como é o caso da lei de Weber. Escrevendo então o 

momento linear total de um sistema de duas partículas em relação a um referencial inercial 

vem 

(2.11) 

Derivando esta expressão em relação ao tempo, usando (1.7) e a lei de ação e reação, (1.6), 

vem dPfdt =O, CQD. Este princípio pode ser generalizado para um número qualquer 

de partículas interagindo por meio de várias forças (Weber, elástica, gravitacional, etc.), 

desde que estas forças satisfaçam ao princípio de ação e reação (ver exercício 2.4 ). 

Em segundo lugar vem a questão da conservação do momento angular. Consideramos 

novamente wn referencial inercial no qual duas partículas interagem entre si através de 

uma força de Weber. O momento angular total do sistema é definido por 

(2.12) 

Fazendo dLfdt, usando as regras usuais da análisevetorial, lembrando que v x v= O, 

usando (1.7) e a lei de ação e reação vem: 

a;= (Ti -i'j) X Fji. (2.13) 

Até o momento não foi utilizada a lei de Weber, a não ser no fato de ela satisfazer ao 

princípio de ação e reação. Usando agora que ela satisfaz a este princípio na forma forte, 

ou seja, que Fj; é paralelo a f;j, vem que dL/dt = O. Novamente este resultado não 
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dependeu da forma explícita da força de Weber, mas apenas de esta força satisfazer ao 

princípio de ação e reação, neste caso na forma forte. Este resultado pode ser generalizado 

a um número qualquer de partículas interagindo entre si por forças de qualquer natureza, 

desde que satisfaçam ao princípio de ação e reação na forma forte (ver exercício 2.5). 

Por último vem a conservação de energia. Supondo que temos duas cargas q; e q;, de 

massas m; em;, interagindo entre si através de uma força de Weber temos que a energia 

total do sistema é dada por: 

(2.14) 

onde U é a energia de Weber dada por (2.9) e T é a energia cinética dada por 

V;·V; Vj·ii; 
T=m·--+m·--

- I 2 J 2 ' (2.15) 

onde i! = dr f dt é a velocidade da partícula em relação a um observador inercial qualquer. 

Derivando E em relação ao tempo, usando (1.7) e a terceira lei de Newton, {1.6), e 

também o resultado do exercício 2.1 sobre o significado de r;i vem que obtemos, lembrando 

de {2.1): 

dE =0 CQD 
dt ' . (2.16) 

Este resultado pode ser generalizado facilmente para um número N de partículas 

interagindo entre si por forças do tipo de Weber. Este é o objetivo do exercício 2.6. 

Obviamente o resultado vai continuar válido se elas interagirem entre si também através 

de outras forças conservativas (como forças elásticas 'ou gravitacionais), além da interação 

eletromagnética de Weber. 

Este procedimento sugere uma nova forma de determinar a força a partir do potencial: 

Dada uma energia potencial U, a força dej em i, Fj;, pode ser obtida fazendo (ver exercício 

2.7): 

{2.17) 
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Nesta seção vimos então que a teoria de Weber é compatível com toda a física clássica 

já que com ela se derivam as leis de conservação básicas a toda a física: conservação do 

1110111ento linear, do momento angular e da energia. Este é um dos resultados fortes e 

importantes da eletrodinâmica de Weber. 

No apêndice B apresentamos a Lagrangeana e a Hamiltoniana de Weber, indicando 

maneiras alternativas de se derivar a força de Weber, as equações de movimento e a 

conservação da energia. 

' 
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2.4 - Exercícios 

2.1- Use BB equações (1.9), (2.2) e (2.3) para mostrar que (use também as definições 

(2.5) e (2.6)): 

(A) r;i = fii · v;i , 
(ll) r;i = r~; [v;i · v;i- (f;i · v;;)2 +fi;· ã;;] , 

(C) Utilize os resultados deste exercício para chegar em (2.4) a partir de {2.1): 

2.2 - Uma outra expressão que às vezes é usada como velocidade relativa é dada por 

Embora na maioria dos casos u;; dê o mesmo valor que i-;;, isto nem sempre ocorre. 

Em particular u;; não é verdadeiramente uma grandeza relaciona!, já que o valor desta 

grandeza pode variar de observador para observador. As grandezBB realmente relacionais 

são: Ti;, r;;, f;;, i-1; e f;;. Apresentamos também alguns exemplos de grandezas não 

relacioaais: fi, fj, ü1, üb ã1, â;, u1;, Vi;, ã1;, {â;; · â;;)112
, f;;· ãi;, .Ti;· â;;, etc. 

(A) Considere um observador ou sistema de referência O no qual a partícula pontual i 

está BObre a origem do sistema de coordenadBS, em repouso, e no qual a partícula pontual 

j está sobre o eixo X à distância p da origem, também em repouso. Mostre que 

- - - o . o Vi = v; = Vij = , e que r;; = u;; = . 

(B) Seja O' um outro sistema de referência com mesma origem que O e que em t = O 

tenha seus eixo8 X'Y' Z' paralelos a XY Z, mas que gire com velocidade angular constante 

wz em relação a O. Mostre que v: = O, v/ = -pw(x' sin wt + y' cos wt), v,; = -v/ f 
O - • 4 - ., o , .J. o , V;; r v;;, e que r ij = , mas u1; = pw r . 

Este exemplo simples e particular é para mostrar que u;; não é uma grandeza 

relacional, enquanto que r;; é relaciona! (neste caso vimos que r~; = T;;, enquanto que 

u;i I u;;). 

(C) Encontre exemplos mostrando situações onde ã1j =F â;;, f~;· ã1~ =F f;;· â;;, etc. 
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2.3 - Na situação m.US geral possível temos que duas partículas i e j se locomovem 

no tempo quando estão interagindo entre si de tal forma que fi = fi(t) e i'j = rj(t). Isto 

naturalmente leva a que r;j = lf';il = r;j(t). Use a regra da cadeia para mostrar que 

dr~-
'1 2'' -- = Tij • 

dra; 
Use este resultado juntamente com (2.9) e (2.10) para chegar em (2.1). 

2.4 - O objetivo deste exercício é generalizar o resultado da conservação do momento 

linear. 

(A) O momento linear de três corpos é definido por P = L;~=l m;ii;. Suponha que 

estes corpos apenas interagem entre si através de forças de Weber do tipo (2.1 ). Mostre 

que dPfdt =O utilizando (1.6), (1.7) e o fato da força de Weber satisfazer ao princípio de 

ação e reação. Suponha que não hajam forças externas. 

(B) Generalize o resultado anterior para N corpos interagindo entre si por forças 

de Weber e também por outras forças (gravitacionais, elásticas, etc.), desde que elas 

também satisfaçam ao princípio de ação e reação. Novamente suponha que não hajam 

forças externas. 

2.5 - O objetivo deste exercício é generalizar o resultado da conservação do momento 

angular. 

(A) O momento angular total de um sistema de três corpos é definido por L _ 
E:=tfi x (miVi)· Suponha que estes corpos apenas interagem entre si através de forças 

de Weber do tipo (2.1). Mostre que dL/dt =O utilizando (1.6), (1.7) e o fato da força de 

Weber satisfazer ao princípio de ação e reação na forma f~rte (Fj; paralelo a r;j)· Suponha 

que _não hajam forças externas. 

(B) Generalize o resultado anterior para N cargas. 

(C) Generalize o resultado anterior para N corpos interagindo entre si por forças de 

Weber e também por outras forças, desde que elas também satisfaçam ao princípio de ação 

e reação na forma forte (como é o caso da força gravitacional Newtoniana, da força elástica 

de Hooke, etc.) Novamente suponha que não hajam forças externas. 

51 



2.6 - O objetivo deste exercício é generalizar a lei de conservação de energia para N 

corpos. 

(A) Siga novamente a seção 2.3 refazendo todos os cálculos explicitamente, seguindo 

os passos indicados, até chegar em (2.16). 

(B) Considere agora o caso de trés corpos de cargas q" q2 e q3; e massas m" m2 e 

m3 , interagindo entre si por forças de Weber (2.1 ). Defina a energia total do sistema por 

(U;; sendo dado por (2.9)): 

2 2 3 2 m 1 v1 m2v2 m v3 E= u12 + u13 + U23 + -
2

- + -
2

- + -
2

- . 

Mostre que dE/dt = O usando (1.6), (1.7), (2.1), (2.9), e usando um procedimento 

como o da letra (A). 

(C) Generalize o resultado anterior para N corpos usando como energia total a 

expressão (lembre-se que U;; = U;;) : 

1 NN N --

I:I: I: v· ·v· 
E=- U·· + m·-'--' 2 IJ I 2 ' 

i=l i=l i=l 
j~i 

onde U;; é dado por (2.9). Mostre então que dE/dt =O. 

(D) Generalize ainda mais o resultado anterior supondo que as partículas estão 

interagindo entre si também através de outras forças conservativas (como através de forças 

gravitacionais ou elásticas) além da interação eletromagnética de Weber. Suponha para 

isto que estas outras forças também seguem o princípio de ação e reação e que podein ser 

derivadas de uma energia potencial que depende apenas da distância entre elas (como é o 

caso da força gravitacional Newtoniana ou da força elástica Hookiana). 

2.7- Seja U dado por (2.9). Utilize (2.17) como uma definição de F;;. Fazendo então 

dU f dt e utilizando o exercício 2.1 mostre que se pode chegar na força de Weber dada por 

(2.1). Esta é então uma maneira alternativa de chegar na força de Weber sem passar por 

(2.10). 
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3) Leis de Força entre Elementos de Corrente 

3.1 - Força de Ampêre e sua Derivação a partir da Força de Weber 

No capítulo anterior apresentamos a lei de Weber e suas principais características. 

Neste capítulo vamos usar a lei de Weber para derivar a lei de Ampêre para a força t'lltre 

dois elementos de corrente. Este é um dos principais resultados que se pode obter com 

a força de Weber. Historicamente o caminho utilizado foi o oposto ao que apresentamos 

aqui, ou seja, Weber obteve sua lei de força a partir da força de Ampêre entre elementos 

de corrente, introduzindo a hipótese de que as correntes elétricas nada mais são do que 

cargas elétricas usuais em movimento. 

O principal resultado experimental obtido por Ampere (1775- 1836) em suas pesquisas 

é o de que a força exercida por um elemento de corrente I2di; em um elemento de corrente 

11 d~ é dada por (quando os elementos de corrente são neutros eletricamente) 

r2 -A Jlo r12 - - A .... " -a· F21 = --1112 - 2-(2(d/1 • d/2)- 3(r12 · d/1) (r12 • d/2)] • 
47r rl2 

(3.1) 

Trocando-se os índices 1 e 2, observando que f12 = -f21, e que Ã · B = B · Ã vem: 

. (3.2) 

Ampere chegou neste resultado final em 1823, em seguida a um trabalho experimental 

e teórico intenso que realizou depois da descoberta fundamental de Oersted, em 1820, da 

deflexão de uma agulha magnética colocada próxima e paralela a um fio com corrente. Seus 

principais trabalhos foram publicados em 1825 (Ampêre, 1825, 1883 e 1958). A melhor 

análise do trabalho de Ampêre é sem dúvida o livro de Blondel (Biondel, 1982). Uma 

discussão muito instrutiva se encontra também em (Tricker, 1965). O trabalho fundamental 

de Oersted já está traduzido em português, com tradução de Roberto de Andrade Martins 

(Oersted, 1986; e Martins, 1986 a). Para uma excelente discussão do trabalho de Oersted, 

seus antecedentes e sua influência ver: (Martins, 1986 h). Vale à pena ressaltar que 
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Maxwell (Ma.xwell, 1954, artigo 528, pág. 175) chamou à Eq. (3.1) de lei cardinal (mais 

importante) da eletrodinâmica, e que esta lei sempre deveria permanecer nesta situação. 

Ma.xwell tinha tanta admiração por Ampere que o chamou de "Newton da eletricidade." 

Whittaker diz que este trabalho de 1825 de Ampêre é uma "das mem6rias mais celebradas 

na hist6ria da filosofia natural" (Whittaker, 1973, pág. 83). 

Talvez o principal aspecto a ser ressaltado na força de Ampêre é o fato de ela satisfazer 

à terceira lei de Newton na forma forte, qualquer que seja a posição e orientação relativa 

entre os dois elementos de corrente. Isto é, á' F~ = -á' F:í1 e á' F21 é paralelo a ru 
qualquer que seja o valor de d~ ·di;, ru · d~ e 1'12 ·di;. 

Weber obteve sua lei de força em 1846 seguindo a hip6tese de Fechner (Fechner, 1845) 

de que a corrente elétrica é constituída de cargas positivas fluindo na direção da corrente e 

de cargas negativas de mesma magnitude que as cargas positivas ( dq1 _ = -dqi+) fluindo 

na direção oposta, com uma velocidade de mesma intensidade ( ii1_ = -iil+ ). Sugerimos 

os livros de Ma.xwell (Maxwell, 1954, Vol. 2, Capítulo 23), de Whittaker (Whittaker, 1973, 

págs. 200 a 211) e de O'Rahilly (O'Rahilly, 1965, págs. 102 a 113 e 518 a 523) para quem 

estiver interessado em seguir o procedimento seguido por Weber. 

No exercício 3.1 (um desenvolvimento mais completo se encontra em (Assis, 1990 b)) 

está indicado o caminho oposto, ou seja, para se derivar a Eq. (3.1) a partir da força 

de Weber, (2.1) ou {2.4). Para isto tem-se de usar a relação usual entre um elemento de 

corrente e as cargas em movimento, relação também introduzida por Fechner e Weber, e 

dada por (no caso de elementos de corrente filiformes neutros eletricamente): 

{3.3) 

(3.4) 

Nestas expressões À i+ (À;-) são as densidades lineares de carga (quantidade de carga por 

unidade de comprimento) positiva (negativa) dos elementos de corrente l;d~, i= 1, 2. A 

condição de neutralidade elétrica significa que À;_ = -Ài+. 

O ponto importante deste exercício é que se consegue derivar (3.1) sem usar a hip6tese 
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de Fechner de que as cargas positivas e negativas numa corrente se movem em direções 

contrárias com velocidades de mesma magnitude (hoje em dia sabe-se que isto não é correto 

e que num fio metálico usual apenas as cargas negativas (os elétrons) se movem). Ou seja, 

partindo da lei de Weber, de (3.3) e de (3.4) chega-se em (3.1) mesmo quando apenas 

uma das cargas se move (como no caso de um fio metálico comum), ou quando ambas 

se movem em sentido contrário mas com velocidades de diferente magnitude (como num 

plasma gasoso usual onde a razão entre a velocidade dos íons e dos elétrons está como 

o inverso da razão entre as massas, isto é, v1 "" -(m2/m1 )v2). Isto mostra que a força 

de Ampere pode ser usada não apenas em correntes metálicas, mas também em plasmas 

gasosos, situações de eletrólise, etc. 

Um outro aspecto importante que se pode observar ao realizar este exercício é que a 

expressão (3.1) continua válida em situações onde as cargas estão aceleradas. Isto é, não é 

necessário impor que os termos de aceleração são nulos em (2.4) para se chegar em (3.1). 

Isto indica que a força de Ampere pode ser aplicada mesmo em situações não estacionárias 

quando as correntes estão variando no tempo (como em circuitos com corrente alternada 

ou quando se liga ou desliga a corrente num circuito). 

Calculamos agora a energia potencial entre dois elementos de corrente neutros 

eletricamente I1d~ e I2di; de acordo com a lei de Weber, utilizando (2.9). Seu valor 

é o mesmo que o trabalho necessário para trazer os dois elementos de corrente desde uma 

distância infinita até as posições e orientações finais, e é dada por 

(3.5) 

Utilizando (3.3) e (3.4) podemos escrever esta expressão como 

(3.6) 
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• 

3.2 - Força de Grassmann e Lei de Biot-Savart 

Apesar dos elogios de Maxwell, Whittaker e outros, a força de Ampere (3.1) é pouco 

conhecida hoje em dia e não aparece mais em quase nenhum livro didático (nem nos 

elementares a nível de ciclo básico, nem nos avançados a nível de pós-graduação). Em vez 

disto só aparece a força de Grassmann dada por 

.... Jlo 1 ... 
dB2 = -

4 
- 2-(J,d/2 X f12) . (3.8) 

7rr12 

Nesta última expressão dB2 é o campo magnético gerado pelo elemento l2di;. Esta 

expressão para dB2 é conhecida como lei de Biot-Savart (Biot e Savart, 1820 e 1821 ). 

Esta expressão de força foi primeiro apresentada por Grassmann em 1845 (Grassmann, 

1845). 

Grassmann nunca teve uma educação formal em física e matemática (estudou como 

curso superior filologia e teologia). Durante toda a vida foi professor de matemática no 

segundo grau e nunca chegou a lecionar numa universidade, embora sempre almejasse por 

isso. Seu principal trabalho científico foi o desenvolvimento de uma álgebra generalizada 

onde não necessariamente valiam as propriedades comutativa e a de existência do inverso 

na multiplicação. Publicou seus resultados num livro em 1844 (apenas um ano depois 

da descoberta dos quatérnions por Hamilton), e numa segunda versão ampliada e 

melhorada em 1862. É no seu primeiro livro que apareceu claramente pela primeira 

vez os modernos produtos escalares e vetoriais. Ein 1845 publicou sua lei de força entre 

elementos de corrente como sendo uma aplicação importante de sua álgebra generalizada. 

Aparentemente Gra.ssmann nunca realizou experiências em física, nem mesmo relacionadas 

com eletrodinâmica. Para estas e outras informações ver: (Crowe, 1985). 

Biot e Savart anunciaram sua expressão para o campo magnético em 30 de outubro 

de 1820. Obtiveram este resultado estudando a interação de um longo fio retilineo (com 

corrente) com um ímã pennanente. Fizeram estas experiências motivados, assim como 
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Ampere, pelo anÚI)cio da descoberta de Oersted, anúncio este feito em 11 de setembro de 

1820, por Arago, na Academia Francesa de Ciências (Whittaker, 1973, págs. 81 a 88). 

Usando que 

Ãx (B x C)= B(Ã·C)-C(Ã·B), (3.9) 

pode-se colocar (3.7) e (3.8) na fonna 

(3.10) 

Trocando-se os índices 1 e 2, observando que i'12 = -i',1 , e que Ã · B = B · Ã vem: 

!lo I,J, - - - - ;<a =- -.- [(dl,. dl,)i',,- (dl,. i',,)dl,]"" -d'J' ••. 
47r r 12 

(3.11) 

A primeira coisa que se pode observar nestas expressões é que embora o primeiro termo 

da força satisfaça ao princípio de ação e reação e seja paralelo a f 12 , o mesmo não acontece 

com o segundo termo que é paralelo a di; ou a d~. Este segundo tenpo n&o satisfaz ao 

princípio de ação e reação a não ser em alguns casos bem particulares. Isto faz com que 

em muitos casos d' Fg #- -d' f,1 quando usamos a expressão da força de Grassmann entre 

elementos de corrente. Ou seja, quando se usam elementos de corrente há casos em que a 

expressão de Grassmann não satisfaz ao princípio de ação e reação nem mesmo na forma 

fraca. Estamos aqui restringindo a análise ao caso de elementos de corrente, contudo mais 

para frente discutiremos o caso de circuitos fechados. 
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3.3 - Derivação da Força de Grassmann a partir da Força de Lorentz 

Nesta seção vamos mostrar como se chega em {3.7) usando a força de Lorentz {1.32). 

Novamente o caminho hist6rico foi o inverso já que Lorentz conhecia a força de Grassmann 

e partiu dela fazendo a substituição qv por I dl para chegar na componente magnética de 

sua força (Lorentz, 1915, págs. 14 e 15); (O'Rahilly, 1965, p. 561). 

Assim como no caso de Weber e do exercício 3.1 supomos que nos dois elementos de 

corrente hajam cargas positivas e negativas dqi+, dq,_, dq2+ e dq2-· Vamos supor que 

o elemento de corrente l2di; gere um campo elétrico dEz {caso ele não seja neutro) e um 

campo magnético dB2. Somando as forças {1.32) sobre as cargas positivas e negativas de 

I 1di; vem: 

{3.12) 

Impondo a neutralidade elétrica dos elementos de corrente ( dq1 _ = -dqi+ e dq2_ = -dq2+) 

vem que o primeiro termo de {3.12) se anula já que dq,+ + dq1 _ =O e também dE2 =O. 

Usando {3.3) se chega então em (3.7), CQD. Para se chegar em {3.10) é necessário ainda 

algo como a lei de Biot-Savart {3.8) relacionando a corrente nas fontes com os campos 

magnéticos que elas geram. Ver ainda o exercício 3.3. 

Uma outra dedução da força de Grassmann a partir da força de Lorentz usand<;> os 

potenciais retardados de Lienard-Wiechert se encontra no capítulo 5. 

', '· 
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3.4 - Ampere contra Grassmann 

Nesta seção vamos comparar as leis de força entre elementos de corrente obtidas por 

Ampere e Grassmann, e discutir alguns experimentos recentes que têm sido realizados para 

se tentar distinguir entre as duas leis. 

O primeiro aspecto a ser salientado, e que já foi comentado anteriormente, é· que a 

força de Ampere (3.1) sempre satisfaz à terceira lei de Newton (ação e reação), e áinda p;,r 

cima na forma forte. Já a lei de Grassmann não satisfaz em geral ao princípio de aÇão e 

reação nem mesmo na forma fraca. Um exemplo disto é o caso apresentado na figurÍ> 3.1 

(ver exercício 3.4): 

-I,dj, A 

. L...l ----'1----- rl.2 

Figura 3.1 

Pela força de Ampere temos 

(3.13) 

Já por Grassmann vem que 

(3.14) 
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,., ~a 
a-F12 =O. (3.15) 

Isto é, de acordo com a lei de Grassma.nn o elemento I1d~ não fará força em I2di;, 

enquanto que I2di; fará uma força não nula em / 1 d~. 

Apesar de alguns livros didáticos apresentarem este exemplo, é usualmente argumen­

tado que elementos de corrente não existem e que na realidade temos apenas correntes 

fechadas, quando então também Grassmann satisfaria ao princípio de ação e reação. Como 

veremos no decorrer desta seção, a situação real pode não ser bem assim. Antes de chegar 

neste ponto vamos discutir um fato importante que mostra porque por muito tempo se 

pensou serem indistinguíveis as duas leis. 

Este fato pode ser expresso assim: A força de tun circuito fechado num elemento de 

corrente de um outro circuito é a mesma quando calculada pela força de Ampere ou por 

Grassmann. Uma prova deste fato marcante se encontra em: (Tricker, 1965, págs. 55 a 

58). Uma outra prova, usando propriedades mais avançadas do cálculo vetorial, se encontra 

delineada no exercício 3. 7. A razão principal deste fato é que se fizermos a diferença entre 

(3.1) e (3.10) obtemos como resultado uma diferencial exata cuja integral ao longo de todo 

o circuito fechado 2 é nula. 

Seguem abaixo alguns teoremas (ver exercício 3.5) e resultados importantes utilizados 

no exercício 3. 7: 

1 1 ru v,-= -v.-= - 2 , 
r 12 r 12 r 12 

(3.16) 

v, x r,. = v. x r,. = o , (3.17) 

(3.18) 

(3.19) 
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- di; - r12 
V2(rn · dl2) = -- + (ru · dl2)-

r12 rn 

(3.21) 

.(3.22) 

(3.23) 

l!:mbora possa parecer que V 1dl1, = O, isto njo é 11empre verdade. Por exemplo, 

vamos supor uma espira circular de raio R= (x~ + IIÜI/3 centrada na origem e na qual 

circula uma corrente no sentido anti-horário. Logo, usando çoordenadas polares, 

(3.24) 

Com (1.17) vem: 

(3.25) 
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Esta semelhança das duas forças neste caso (força de um circuito fechado sobre um 

elemento de um outro circuito) fez com que muitos pensassem que ambas as forças sempre 

dessem o mesmo resultado. Aliando-se a isto o fato de a força de Grassmann ser muitas 

vezes mais fácil de integrar do que a de Ampere fez com que ao longo do tempo a força de 

Ampere fosse sendo deixada de lado em favor da de Grassmann. Cremos que outro motivo 

para a força de Ampere ter sido deixada de lado é que a teoria da relatividade restrita 

é baseada no conjunto das equações de Maxwell mais a força de Lorentz. Acontece que 

Grassmann é compatível com a força de Lorentz (basta substituir I1 d~ por q1ii1 em (3.7)), 

enquanto que a força de Ampere não o é. Devido ao sucesso e popularidade da relatividade 

restrita, tudo aquilo que não fosse compatível com a força de Lorentz foi abandonado. 

Só que nos últimos anos as leis de Ampere e de Weber têm voltado a ser consideradas 

seriamente por motivos experimentais que indicamos a seguir. Antes de prosseguir vale 

lembrar que o próprio Maxwell não apenas conhecia a força de Grassmann, mas preferia a 

força de Ampere à de Grassmann. Por exemplo, no artigo 527 de sua obra máxima Maxwell 

afirma, depois de citar as forças de Grassmann e Ampere, que "a força de Ampere é sem 

dúvida a melhor, pois ela é a única que faz as forças sobre os dois elementos não apenas 

iguais e opostas mas ao longo da linha reta que os une." Isto é, Maxwell preferia a força 

de Ampere por ela sempre seguir a forma forte da lei de ação e reação de Newton. Ver: 

(Maxwell, 1954, artigo 527, pág. 174). 

Voltando agora à distinção entre as duas forças. O resultado de que a força de um 

circuito sobre um elemento é a mesma por AmpCre e por Grassmann vale se o circuito for 

fechado e se o elemento de corrente que sente a força não fizer parte deste mesmo circuito. 

Caso estejamos calculando a força do restante do circuito numa parte dele mesmo então 

este resultado pode deixar de ser válido. O ponto prlncipal é que isto também pode ser 

realizado na prática, ou seja, pode-se detectar e medir a força em parte de um circuito 

devido ao restante dele mesmo. A técnica experimental utilizada é ligar as duas partes de 

um mesmo circuito sólido metálico por mercúrio líquido, como indicado nas figuras abaixo 
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a) A,...__ 
B c 

Ir 

E D 

v 

Figura 3.2 

Na figura (A) temos mercúrio líquido nas regiões A e C, e a parte do circuito ABC é 

livre para mover-se na horizontal e na vertical quando flui a corrente I. Com isto CIISO o 

restante do circuito CDEA faça uma força resultante sobre ABC, esta pode em princípio 

ser detectada e medida. A vantagem do mercúrio líquido é que como ele é condutor pode-se 

estudar o movimento e a força sobre a parte ABC sem interromper a ,corrente. Na figura 

(B) temos uma representação da famosa ponte de Ampere. A ponte BCDEF move-se 

para a frente quando passa corrente no circuito, deslizando livremente sobre o mercúrio 

das duas tinas. Ampere bolou este experimento para comprovar 11 existência dlUl forças 

longitudinais previstas por sua força. 

O próximo aspecto que vamos discutir aqui é uma outra situação do tipo da figura 

3.1, isto é, a força entre dois elementos de corrente paralelos e colineares: 

- f- -1-

Figura 3.3 
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Usando (3.1) a (3.11) obtemos (ver exercício 3.4): 

>2 ~A p 0 dl,d_/2. >2 ~A 
a- F21 = -

4 
. I, I. 2 r12 =-a-F12 , 

7r ru 
(3.26) 

(3.27) 

Neste caso particular vemos que Grassmann satisfaz ao princípio de ação e reação não 

prevendo nenhuma força de um elemento sobre o outro. Por outro lado Ampere também 

satisfaz ao princípio de ação e reação mas prevê uma força de repulsão entre os elementos 

de corrente. E é usando exatamente este fato que têm sido realizados recentemente uma 

série de experiências com circuito único (já vimos anteriormente que Ampere e Grassmann 

são indistinguíveis quando se trata da interação entre dois circuitos fechados) para se 

tentar distinguir experimentalmente entre as duas forças. Todos os experimentos de que 

temos notícia confirmam a repulsão prevista por Ampere em (3.26). Estes experimentos 

tratam da propulsão a jato em líquidos {Graneau, 1982 a); dos aceleradores de projéteis 

(railgun accelerators), (Graneau, 1982 h, 1985 a, 1986, 1987 a, 1987 h); do fenômeno de 

explosão de fios (Graneau 1983, 1984, 1985 h e 1987 c), (Nasilowski, 1985), (Aspden, 1987); 

das explosões eletrodinâmicas em líquidos {Graneau e Graneau, 1985), (Azevedo e outros, 

1986), {Aspden, 1986); e do pêndulo de impulso eletromagnético (Pappas, 1983), (Graneau 

e Graneau, 1986), {Pappas e Moyssides, 1985), (Moyssides e Pappas, 1986). 

Por exemplo, nos experimentos de explosão de fios passa-se uma alta corrente num 

fio metálico usual e observa-se que este fio se rompe em vários pedaços. Este fenômeno 

já era observado há muito tempo mas pensava-se que os rompimentOB eram devidos ao 

derretimento do fio em algumas partes devido ao efeito Joule. Foi então que se fez uma 

fotografia com microscópio eletrônico das partes fragmentadas e se observou que os fios 

eram rompidos no estado sólido por características de tração e não de fusão ( Graneau, 

1983). A única explicação para estes fatos, compatível com os dados experimentais, tem 

sido baseada na força de repulsão de Ampere, {3.1) e (3.26). 

Contudo deve ser enfatizado que a controvérsia Ampere contra Grassmann ainda 

é uma questão em aberto e muita discussão baseada em argumentos matemáticos 
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e experimentos físicos está ocorrendo na literatura. Alguns exemplos relevantes: 

(Cbristodoulides, 1987), (Strnad, 1989), (Comille, 1989), (Whitney, 1988), (Rambaut e 

Vigier, 1990), (Moyssides, 1989 a, b, c), (Phipps, 1986; ê 1990 a), (Phipps e Phipps, 1990), 

(Graneau, 1989 a, b ), (Graneau, Thompson e Morrill, 1990), (Wesley, 1987 a, b; 1990 a, 

b; e 1991, Capítulo 6). 

Em geral trabalhamos com correntes filiformes, mas às vezes também ocorre de termos 

corrente elétrica fluindo sobre uma superfície ou por sobre um certo volume, e não apenas 

por uma linha. Sendo t7 a densidade superficial de carga (carga por unidade de área) e p a 

densidade volumétrica de carga vem que todos os resultados anteriores podem ser mantidos 
.... ... ... ... ... 

substituindo I dl por K da ou por J áV, onde K é a densidade superficial de corrente e J a 

densidade volumétrica de corrente. Em particular temos, no caso de elementos de corrente 

neutros eletricamente (i= 1, 2 e j = 2, 1): 

(3.28) 

(3.29) 

Já as forças entre os elementos de corrente de Ampere e de Grassmann ficam nas 

formas 

"' ~A oup P.o r;; ( ~ ~ .~ ~ 
a-F;; = --

4 
2[2 K; · K;- 3(f;; ·l\;) (r;;· K;)]da;da; , 

7r rij , 

_14 .;::!.G sup Jlo 1 ... .., ... ' ... ... .., 
a-l';i = -

4
- ,[(K; · K;)r;;- (r;; • K;)K;]da;da; , 

7r ri; 

_16 .... G I J.lo 1 ... ""' ... ... 
a- F;; vo = -4- T[(J;. J;)r;;- (r;i. J;)J;]dV; áV; . 

1r rij 
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Concluindo esta seção vamos ressaltar uma vez mais (Tricker, 1965, págs. 55 a 58; e 

o exercício 3. 7 desta seção) que a partir da força de Ampere (3.1) se deriva que a força 

de um circuito fechado C2 sobre um elemento de corrente 11 d~ é dada por 

... A ... -
dFC I dl- = I,dl, X B ' 

2 em 1 1 
(3.34) 

- I-'• i - ru B = -
4 

I2dl2 x 2 . 
7r c, rn 

(3.35) 

A força de Ampere (3.1) veio como um resultado experimental de suas pesquisas, e 

para chegar em (3.34) e (3.35) foram usadas apenas manipulações matemáticas a partir 

de (3.1 ). Logo não é necessário postular inicialmente um campo magnético como o de 

Biot-Savart (3.8) já que o resultado acima foi derivado de (3.1 ). Para reforçar este ponto 

vale lembrar que um dos resultados experimentais obtidos por Ampere para chegar em 

(3.1) é o de que "a força de um circuito fechado de forma arbitrária exercida sobre um 

elemento de corrente de um outro circuito é perpendicular a este elemento" (Ampere, 

1825), (Whittaker, 1973, págs. 83-87), (Maxwell, 1954, Vol. 2, Cap. 2, págs. 161-2). E o 

produto vetorial em ( 3.34) indica exatamente isto, já que um vetor 6 obtido por 6 = Ã x B 
é ortogonal tanto a Ã quanto a B. 
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3.5 - Derivação da Lei Circuitai de Ampêre e da Lei de Não Existência de 

Monopólos Magnéticos 

Nesta seção vamos tratar da derivação da lei circuital de Ampere. É assim que se 

chama a equação (1.49), às vezes sem o termo em d~E/dt. Vamos também derivar outra 

das equações de Maxwell, isto é, a lei de não exis~ência de monopólos magnéticos. Para 

derivar estas duas leis vamos seguir o procedimento do Jackson ( Jackson, 1975, Seção 5.3). 

Como já vimos na seção 1.4 (ver também exercício 1.3) esta lei circuital de Ampêre 

(1.49) pode ser derivada diretamente de (1.42). Vamos então nos concentrar na derivação 

desta lei e da (1.43) a partir da força entre elementos de corrente. O principal resultado 

a que Ampere chegou em suas extensas e precisas pesquisas experimentais, aquilo que é 

realmente a lei de Ampere, é sua lei de força entre elementos de corrente dada por (3.1). 

Tudo o mais que ele fez foi a partir desta lei. Veremos que se pode derivar (1.42) e (1.43) a 

partir desta lei desde que se assuma também a equação de continuidade de cargas, (1.45). 

Na formulação de Maxwell há apenas correntes fechadas (ímãs interagindo com 

ímãs, ímãs interagindo com correntes fechadas, correntes fechadas interagindo com outras 

correntes fechadas, etc.) Nos restringindo então ao campo magnético gerado por correntes 

fechadas, podemos usar tanto (3.1) quanto (3.34) e (3.35); ou então (3.7) e (3.8), ou (3.10) 

para a força deste circuito fechado num elemento de corrente de um outro circuito já que 

todas elas dão o mesmo resultado (ver exercício 3.7). Usaremos então (3.34) e (3.35) daqui 

por diante. 

Substituindo então I,di, por .ÜVz e integrando a expressão do campo magnético 

gerado pelo circuito 2 em todo o espaço podemos obter o campo magnético gerado no 

ponto onde se encontra o elemento I1 d~ (ou J~dVJ}como sendo dado por 

B(r~o t) = P.o f f f f( r;, t) X r~· dV. o 

411' r 12 
(3.36) 

Nesta expressão deixamos f depender não só da posição no circuito mas também do 

tempo já que queremos tratar do caso geral das intensidades das correntes podendo variar 

explicitamente no tempo. Apesar disto vamos supor os circuitos fixos no espaço de tal 
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forma que ;:,., ru e ru não dependam do tempo. 

Lembrando do resultado {3.16), ver exercício 3.5, vem que pode-se escrever ru/rl2 

como -V1(1/r12 ). Como V 1 só atua na variável! este operador gradiente pode ser tirado 

para fora da integral. Lembrando que 

V x (u G) = (Vu) x G + u(V X G), {3.37) 

{3.38) 

vem que 

B(r,, t) =:;v, x (f f f it~~ t>dv.). (3.39) 

Aplicando o divergente em ambos os lados desta equação e usando ( 1.46) obtemos 

a equação (1.43) da não existência de monopólos magnéticos. Deve-se observar que para 

ebegar neste resultado não foi necessário utilizar a equação de continuidade. 

Na seção 2.1 havíamos visto que com a lei de Weber se derivava a lei de Gauss, 

primeira das equações de Maxwell. Já vimos na seção 3.1 que com ela também se deriva a 

força de Ampere (3.1). Acabamos de ver que com a for~a de Ampere se deriva a terceira 

das equações de Maxwell, isto é, a lei da não existência de monopólos magnéticos. Vamos 

agora seguir esta linha de raciocínio para derivar a partir da for~ de Ampere a segunda 

das equações de Maxwell, isto é, a ebamada lei circuitai de Ampere. 

Aplicando agora o rotacional em ambos os lados destt~ equação e usando que 

v x (V x G) = V(V. G)- v•õ, (3.40) 

obtem-se, após introduzir novamente os operadores e lembrando que 

(3.41) 

e com isto vem 
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- - fio (JJJ - 1 ) V1 x B(r., t) = 
4

,.. V1 J ·V, r
12 

dV2 

(3.42) 

Para resolver-se esta segundo integral tem-se de usar um outro resultado da análise 

vetorial, isto é: 

v; 2... = -4,.ó(r, - ro) , 
••• 

(3.43) 

onde 6( r, - r.) é conhecida como a função delta de Dirac. Esta função tem as seguintes 

propriedades, como já vimos anterionnente: 

{ 

ó(f', - f'o) =o para r, #r. ' 

= /(r.) ~e v~ contem r, ' } 

= O se Y2 não contem fi . , 

Usando também (3.16) na primeira integral de (3.42) obtemos: 

V 1 x B r., t = p 0 J(r1 , t - -V1 J r2 , t) · V2 -dV2. -(- ) - - ) f' o f f f -(- 1 
471" ••• 

' 

(3.44) 

(3.45) 

(3.46) 

Só falta agora obter a última integral. Usando novamente (3.41) obtemos, usando 

também (1.39): 

f !f l(r., t) · v.2...dvz = j j i( r., t) . dã2 
T12 TJ2 

-f f f r:. Vz ·!(fi, t)d'V2 · (3.47) 
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Lembrando que estamos integrando em todo o espaço vem que a integral de superfície 

que aparece em (3.47) é feita no infinito. Supondo que o circuito 2 é limitado no espaço e 

que não se estende ao infinito, vem que esta integral é nula. 

Usando agora a equação de continuidade (1.45) em (3.47), lembrando que J = pü, 

vem que (3.46) vai ficar na forma (8/ât pode sair para fora da integral pois não atua em 

rn, já que é apenas uma derivada parcial): 

V xB- J~- P.o!!_n fffp(fi, t)dv; 
1 - P.o 4 "' v 1 2 · 

~u' r12 
(3.48) 

De (1.16), substituindo-se a distribuição discreta de cargas por uma contínua (q -+ 

páV, L: -+ f f f), vem que o potencial escalar elétrico de Poisson fica na forma: 

4>(T,., t) = _1_ f f f p(fi, t) dV. . 
47rE: 0 r12 

(3.49) 

Jogando (3.49) em (3.48) obtem-se, lembrando da definição do campo elétrico em 

(1.18): 

.. ... ... ... 1 aE ... 
V1 x B(r1 , t) = p..J(r1 , t) + c2 8t (r1 , t). (3.50) 

E esta é a equação (1.42) que queríamos derivar. 

O fato que deve ser ressaltado nesta derivação é que para se chegar cw (1.42) foj 

usado, além da lei de força entre elementos de corrente, a equação de continuidade para 

cargas elétricas. Isto mostra que a lei circuitai de Ampere pode ser derivada 0\1 do campo 

magnético de Biot-Savart ou da força de Ampere na forma (3.34) e (3.35), desde que se 

assuma também a equação de conservação de cargas. É importante ressaltar que a corrente 

de deslocamento, o termo em 8E/8t em (3.50) ou (1.42), já surge naturalmente nesta 

derivação. E já vimos no capítulo 1 como se chega na lei circuitai de Ampere integrada, 

(1.49), a partir desta forma diferencial. 

como curiosidade histórica vale informar que mesmo a conhecida "lei circuitai de 

Ampere," isto é, (1.49) ou (1.42) sem o termo de corrente de deslocamento, não foi obtida 

pelo próprio Ampere, mas sim por Maxwell em 1856, 20 anos após a morte de Ampere 
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(ver Wbittaker, 1973, Vol. 1, págs. 242 a 245). Como já ressaltamos ma.is de uma vez, 

o principal resultado obtido por Ampere em suas experiências foi sua expressão para a 

força ent!"e elementos de corrente (3.1). De qualquer forma parece justo chamar (1.49) de 

lei circuita.l de "Ampere," e não de "Biot-Savart," nem de "Grassmann," já que Maxwell 

sempre traba.lhou com a força de Ampere (3.1) e quase nunca com a de Grassmann, (3.7) 

e (3.8), embora conhecesse a todas elas. 

Sobre Ampere, sua vida e sua obra, ver ainda: (Blondel, 1982; Tricker, 1962; e Caneva, 

1980). Para uma discussão histórica do assunto deste capítulo e correlatos ver também: 

(Thomson, 1885; e Arzelies, 1972, págs. 198 a 209). 

Recapitulando, no capítulo 2 havíamos visto que de Weber se chega em Coulomb e 

então a Gauss, a primeira das equações de Maxwell. Neste capítulo vimos que de Weber 

se chega na força de Ampere entre elementos de corrente e que a partir desta força· se 

chegam .em outras equações de Maxwell: a lei circuita.I de Ampere e a lei de não existência 

de monopólos magnéticos. Para completar a prova da compatibilidade da força de Weber 

com as equações de Maxwell só falta derivar a partir de Weber a lei de indução de Faraday. 

Este é o assunto do próximo capítulo. 
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3.6 - Exercícios 

3.1- Neste exercício vai-se derivar a força de Ampere (3.1) a partir da força de Weber. 

Este exercício está baseado em (Assis, 1990 b). 

A forma mais fácil de fazê-lo é usando a força de Weber na forma (2.4). Suponha 

então cada elemento de corrente l;d~ como consistindo de cargas positivas e negativas, 

com velocidades Vi+ e ü,_, e acelerações ãi+ e ã1_, respectivamente. Vamos supor circuitos 

filiformes tal que as densidades lineares de carga sejam dadas por ÀJ+, Àt-, À2+ e À2-· 

Isto significa que a quantidade de carga em cada elemento de corrente é dada por dql+ = 
ÀJ+dlt. dq1 _ = Àt_dlt. dq2+ = À2+d/2 e dq•- = À2_d/2. Suponha também que eles 

são neutros eletricamente, isto é, dq1 _ = -dqH, ou À;- = -ÀH· Como os elementos de 

corrente têm tamanho infinitesimal vem: ri+ = fi_ = r;. 
(A) Obtenha a força do elemento 2 no elemento 1 somando as quatro componentes da 

força: 

Observe que no resultado final a parte Coulombiana e a parte de aceleraçàQ em (2.4) vão 

a zero. 

(B) Finalmente utilize (3.3) e (3.4) par& colocar o resultado d& parte (A) na forro& da 

equ&Ção (3.1 ). 

3.2 - Agora vamos obter a energia potencial entre dois elementos de corrente de acordo 

com a lei de Weber. 

(A) Suponha as mesmas coisas que no exercício 3.1. 

(B) Obtenha a energia potencial entre dois elementos de corrente eletricamente neutros 

a partir de (2.9), adicionando as contribuições dos grupos de cargas: 

(C) Utilize (3.3) e (3.4) no resultado anterior para colocá-lo n& forma (3.6). 
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3.3 - Neste exercício vai-se derivar a força de Grassmann (3. 7) a partir da força de 

Lorentz (1.32). 

(A) Suponha as mesmas coisas que no exercício 3.1. 

(B) Obtenha a força do elemento 2 no elemento 1 somando as quatro componentes da 

força, como no exercício 3.1, mas agora usando (1.32) em vez da força de Weber. 

(C) Use (3.3) para colocar este resultado na forma da força de Grassmann (3.7). 

3.4- (A) Use as expressões (3.1) e (3.10) para calcular a força exercida pelo elemento 

I 2di; no elemento I 1d/; usando Ampere e Grassmann na situação mostrada na figura 3.1. 

Em seguida use (3.2) e (3.11) para calcular a força de Ild/; em I 2di; e confirme que 

enquanto para Ampere vale o princípio de acão e reação, o mesmo já não ocorre com 

Grassmann. 

(B) Repita o procedimento anterior no caso da figura 3.3. Nesta situação apesar de 

haver ação e reação tanto para Ampere quanto para Grassmann, vai haver uma repulsão 

entre os elementos de corrente de acordo com Ampere, e nenhuma repulsão ou atração de 

acordo com Grassmann. 

3.5- Prove usando componentes retangulares Cartesianas as relações (3.16) a (3.23). 

3.6 - Uma função que vai ser usada no próximo exercício e no capítulo 4 é dada por ' 

(A) Use o teorema de Stokes, (1.40), e as relações (3.37) e (3.17) para colocar G na 

forma 

(B) Use V (f g) = f'il g + g'il J, a relação (3.18) e o fato de r12 x r12 = O, para mo5trar 

que 
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G =-f f (J4 x r~•) o dã2 o ls'J ru 

(C) Use a segunda igualdade de (3o16), (3o37) e novamente o teorema de stokes (1.40) 

para mostrar finalmente que 

(D) Mostre que 

3o 7 - O objetivo deste exercício é mostrar que a força de um circuito fechado sobre 

um elemento de corrente de um outro circuito é a mesma quando calculada pela força de 

Ampere ou pela de Gr..,smanno 

Após integrar no circuito 2, ""equações (3o1) e (3ol0) podem ser escritiUI como 

onde 

~ i ~ di; A3 = (rn o dl,)2 . 
C:a rn 

(A) Usando (3o16), o fato de que V(fg) = f'\lg + gVf, e as relações (3o19) e (3o20) 
~ 

mostre que A2 pode ser expressa como (lembre-se que como V 1 só atua na variável 1 ele 

pode sair da integral fc, ): 
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+ 1 ("~2 
o di;)d~ o k2 ru 

(B) Use o fato de d~ poder sair para fora da última integral, mais o teorema de Stokes 

e as relações (3.16) e (1.47) para mostrar que a última integral do lado direito da expressão 

acima é nula. 

(C) Use o exercício 3.5 e aplique novamente 'V1 em G para mostrar que (usando (3.32)) 

onde 

- di2r] 'V 1di1y + [(i'12 ·di;) (z, r~2 z2
) -di,.] 'V 1 di1z} . 

(E) Lembrando que tudo que tem a ver apenaS com a variável 1 pode sair para fora 

da integral sobre c2 vem que a primeira integral de Ã. pode ser escrita como 

('V,di,.) 1 .2..[(r,2 . di;) (r•2. x)- (di; . x)J . !c2 ru 

Use o teorema de Stokes (1.40) e as relações (3.37), (3.38), (3.16), (3.17) e os fatos de 

que 'V2 X x = 0, r12 X i'12 = 0, 'V,(fl2 · x) = [-x + (f12 · x)rl2J/r,,, para mostrar que esta 

integral é nula. 
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(F) Mostre que as outras duas integrais de Ã. também são nulas, p8l'a concluir que 

Ã.=O. 
( G) Jogue o resultado da letra (F) na letra (D) para concluir que são iguais as forças de 

Ampere e Gnssmann de um circuito fechado .!!Obre um elemento de corrente de um outro 

circuito. Isto é um resultado de 3Ã2 = Ã1 + Ãs, de tal forma que 2Ã1 - 3Ã2 = Ã1 - k. 
Isto significa que 

( ~ . ) A ~ Po I2dl2 X rn 
dF0 I •r. = df'<!c I •r. = I 1dl1 x - J . f4 . . 

t em 1• 1 2 em 1• 1 4w1c, , •2 · 

' 
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4) Lei de Indução de Faraday 

4.1 • Lei de Faraday 

Vsualmente se produz corrente elétrica através de uma voltagem ou diferença· de 

potencial eatrostática, como quando ligamos os terminais de uma pilha ou bateria por 

um condutor metálico. Uma outra maneira de gerar corrente elétrica completamente 

independente da anterior foi descoberta em 1831 por Michael Faraday (1791 - 1867). Este 

é o assunto deste capítulo. 

Faraday nunca teve uma educação formal em ciência e sempre foi um autodidata. 

Chegou a assistir a algumas palestras públicas do químico e físico inglês Humphry Davy 

(1778 - 1829) e aos 21 anos passou a ser assistente de Davy 110 laboratório de quínúca 

da. Royal Institution (Londres). Foi a.í que ele trabalhou a. vida. inteira.. A partir da. 

morte de Davy se tomou o diretor do laboratório. Farada.y sempre foi essencialmente 

um químico e físico experimental, e seus conhecimentos matemáticos sempre foram muito 

restritos.- Faraday sempre foi muito influenciado por Da.vy e durante u11s 10 anos se ocupou 

principalmente de quínúca ( eletrólise, decomposição de elementos, etc.) Foi a partir de 

1820, em seguida. à descoberta fundamental de Oersted, que passou a se dedicar mais ao 

eletromagnetismo. 

A inspiração para suas pesquisas experimentais foi a tentativa de encontrar fenômenos 

na eletrodinâmica análogos ao que ocorre na eletrostática. Sabia. que quando se aproxima 

uma. carga elétrica de um condutor neutro (por exemplo, um metal), a carga induz uma 

carga. oposta. no lado do condutor mais próximo da. carga (ver figura. 4.1 ): 

oi bl 

+O 
• 

Condutor neutro 

Figura 4.1 

77 

Polarização ou 

indução de cargas 

+ 
+ 



Sua idéia inicial foi a de que se m8Jltivesse uma corrente elétrica próxima de um outro 

fio fechado ou chapa metálica, a primeira corrente poderia induzir uma corrente elétrica 

nestes corpos vizinhos, e esta corrente induzida permaneceria enquanto houvesse corrente 

no primeiro circuito. Viu experimentalmente que esta idéia não funcionava mas fez a gr8Jlde 

descoberta em 1831 de que uma corrente era induzida no circuito secundário desde que 

variasse a corrente no circuito primário. Em seguida observou que mesmo que houvesse 

uma corrente constante no circuito primário, podia induzir uma corrente no secundário 

desde que houvesse um movimento relativo entre os dois circuitos. Também se a área de 

um dos circuitos fosse alterada seria gerada uma corrente enqu8Jlto estivesse havendo a 

variação da área. Estes três casos estão representados na figura 4.2. 

oi c c) 

s~ ~ 
R 

.z ç:Jrln 
c i o(:i:)sA v 
' v 

bl SM d) c .. 

t2 -v 

? ,o;:,, 

Figura 4.2: Indução de correntes 

(A) Variação de intensidade da corrente no circuito primário, 

(B) Ímã permBJlente se aproXÍmBJldo de um circuito, 

(C) Circuito se aproxim8Jldo de um ímã, 

? 

(D) Variação da área de um circuito numa região de campo magnético. 

Na figura (A) os circuitos estão em pl8llos paralelos. Nas figuras (B) a (D) o eixo 

norte-sul do ímã é normal ao pl8llo do circuito secundário. 
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Faraday expressou seus resultados dizendo que a corrente induzida I2 é devida a uma 

força eletromotriz induzida, f'em12 , e esta fem12 surge quando há uma variação do fluxo 

magnético sobre a área do circuito secundário onde está oci>rrendo a indução. Lembrar que 

a f em, embora seja chamada de força, é uma voltagem não eletrostática cuja dimensão é o 

volt {lV = lkgm2C-1s-2). Por analogia com a lei de Ohm (I= V/R) podemos escrever 

a lei de Faraday (quando não há baterias ligadas ao circuito) na forma 

[. _ fem12 
2- ' R2 

(4.1) 

(4.2) 

<I> a= ls, j B · dã2 . (4.3) 

Em (4.2) o sinal de menos foi colocado para deixar estalei compatível com a descoberta 

de Lenz de 1834, que tem a ver com o sentido da corrente induzida, coisa que Faraday não 

havia determinado. A lei de Lenz afirma que quando se varia o fluxo magnético sobre um 

circuito a corrente induzida nele é em direção tal que a força result.ante sobre ele tende a 

se opor à variação do fluxo. Por exemplo, suponhamos que haja uma espira circular de 

raio r centrada na origem, sobre o plano XY, sem corrente. Caso um ímã permanent~ 

localizado sobre o eixo Z, na região z > O, com o pólo norte para baixo e o pólo sul para 

cima comece a se aproximar da espira, a corrente induzida será na direção anti-horária. 

Isto é, é como se a espira se transformasse num pequeno ímã com o pólo norte para cima 

tal que tende a repelir o ímã permanente que está se aproximando dela. Pode-se dizer que 
', 

a lei de Lenz exprime o fato de no caso da indução de correntes a natureza se comporta 

de maneira a evitar instabilidades (no exemplo acima caso a corrente induzida fosse no 

sentido horário haveria uma atração entre o ímã e a espira, o que se configuraria como 

uma situação instável já que qualquer perturbação na posição do ímã tenderia a crescer 

indefuúdamente ). 
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4.2 - Franz Neuman 

Além de Faraday e Lenz, outra pessoa importante na lei de indução é Neumann. Ele 

foi o primeiro a matematizar a lei de Faraday. O objetivo de Neumann era deduzir a lei 

de Faraday (4.1) a (4.3) partindo da força de Ampere (3.1). Foi durante suas pesqui988 

que introduziu o potencial vetor magnético Ã definido por (Nenmann, 1845 e 1848 a, b ): 

(4.4) 

Este é o potencial vetor no ponto f2 devido ao circuito C,. Aplicando o rotacional tT 2 )( 

em ambos os lados de (4.4) se obtem (usando (3.37), (3.16) e lembrando que o operador 

V 2 só atua nas variáveis 2 e portanto pode entrar em Jc, e não atua em I, d~ ): 

~ 1-'o i f12 ~ V2 x A= -
4 

- 2- x l,d!, . 
1r Ct rl2 

(4.5) 

Mas este é justamente o campo magnético devido ao circuito 1 ((3.35) trocando os 

índices 1 e 2, e lembrando que f21 = -f12), isto é, 

J3<r.> =v. x Ã, (4.6) 

com Ã dado por ( 4.4). Aplicando este resultado em ( 4.2) e usando o teorema de Stokes 

(1.40) vem que pode-se escrever a lei de Faraday (4.1) com a fem12 dada na forma (ver 

exercício 4.1 ): 

d di ~ ~ i éJÃ ~ /em12 = --CA = -- A·d/2 = , (--)·d/2. 
dt dt c, c, 8t 

(4.7) 

Isto é, Neumann conseguiu expressar a lei de indução sem precisar falar no campo 

magnético, e para isto usando apenas seu potencial vetor Ã, dado por ( 4.4). 

Nenmann também introduziu aquilo que se chama de coeficiente de indutância mútua, 

M,dadopor 

(4.8) 
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Este coeficiente é independente dii intensidade dàs commtes' li e li, 'e portanto é 

apenas um fator geométrico que relaciima ·os dois circUitos: 'Cot\Hstb .. vem q'tie 'a:'lei de 

indução também pode ser expressa na forma (ver e~ercício 4.2): 

(4.10) 

Há aindà uma outra maneira de ver a lei de indução. Um dipolo elétrlci> e oon~titwdo 
por dúas cargas de mesma tnagnitude mas de sinais opostos separadas pela disibda 1: 'fj 
momento de dipolo elétrico é definido por: 

'•(üij 

onde q é a carga positiva e r é o vetor que aponta da carga negativa para a positiva, e 
• .. 

cujo módulo é a distância entre as duas. A energia potencial deste dipolo ouw.a região de 

campo elétrico E (isto é, a energia gasta para trazer este dipolo lentamente do infuíig até 

este ponto sem alterar a distância I, e supondo que E não dependa do'tempo) é dada por 
·. ',. ' 

W=-p·E. (4.12)· 

Em analogia cóm tudo isto vem que se pode definir o momento magnético de ~m~· 

pequena espira de área a e corrente I como 

~ I . m = au, (4,13) 

onde il é o vetor unitário perpendicular à área a e apontando de acordo com a regra da 

mão direita. A energia potencial deste dipolo numa região onde há um campo magnético 

B (isto é, a energia gasta para trazer este dipolo lentamente d9 infinito até esta região 

supondo que ii não depende do tempo e que I~ a permanecem constantes) é dada por 

W=-m·ii. (4.14) 
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No easo de um circuito macroscópico C1 na presença de um campo magnético B vem 

ao se generalizar o resultado anterior que sua energia potencial é dada por 

W= -I, f L. B-dã, = -I,I.M. (4.15) 

Isto leva a que a força eletromotriz induzida seja dada por 

( 4.16) 

Em (4.15) W pode ser visto como o trabalho que tem de ser feito Contra a força 

entre os dois circuitos C, e C2 para separá-los a uma distância infinita, supondo que as 

intensidades das correntes permaneçam constantes. 

Antes de prosseguir vale lembrar que de acordo com a lei de Ohm vem que a f em é 

uma voltagem e portanto é igual a f E· dl Usando este resultado em ( 4.2) e ( 4.3) vem: 

Jem12 =i. E-di;= f L, (-0:) -dã2. (4.17) 

Do teorema de Stokes (1.40) vem então 

- IJiJ 
VxE•-IJt, (4.18) 

que é a lei de Faraday na forma diferencial (1.44). Comparando ainda (4.17) com (4.7) vê­

se que a componente do campo elétrico responsável pela lei de indução não é a componente 

de Poisson, mas sim -âÃfât (ver exercício 1.8). 
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4.3 • Derivação da Lei de Faraday a partir da Força de Weber 

Agora que já detalhamos alguns aspedos da lei de indução, vamos deduzi-la partindo 

da lei de Weber. Há vários procedimentos para isto, cada um deles com suas peculiaridades 

e características pr6prias, e como exemplo citamos: (Whitta.lrer, 1973, Vol. 1, Cap. 7), 

(O'Ra.hilly, 1965, Vol. 2, Cap. 11), (Wesley, 1987 b; 1990 a, b; e 1991, Cap. 6), (Maxwell, 

1954, Vol. 2, Cap. 23). Vamos seguir mais de perto o procedimento de Maxwell ne•ta 

dedução. 

Inicialmente citamos as palavras de Maxwell: 

"Ap6s deduzir da fórmula de Ampere para a ação [força] entre elementos de corrente, 

sua pr6pria f6rmula para a ação (força] entre partículas elétricas que se movem, Weber 

procedeu para aplicar sua f6rmula à explicação da produção de correntes elétricas por 

indução eletromagnética. Nisto ele foi eminentemente bem sucedido, e indicaremos· o 

método pelo qual as leis de indução de correntes podem ser deduzidas da f6rmula de 

Weber." (Maxwell, 1954, artigo 856, pág. 486). 

Queremos então calcular a força eletromotriz induzida sobre o circuito 2 devido à 

corrente no circuito primário nas duas situações estudadas por Faraday: Quando o circuito 

1 translada como um todo, se aproximando ou se afastando do circuito 2; e quando a 

corrente no primário varia no tempo, / 1 (t). Apresentanws novamente a força de Weber 

exercida por dqz sobre dqlo (2.4 ): 

( 4.19) 

A força eletromotriz, f em, é uma voltagem que gera uma corrente. Podemos pensar 

numa voltagem como sendo devida a um campo elétrico. No caso de cargas livres no espaço 

sabemos que as positivas vão do maior para o menor potencial, isto é, na mesma direção 

em que aponta o campo elétrico, enquanto que as negativas segnem em sentido contrário. 

Caso isto ocorra então ambas contribuem com o aumento da corrente. No caso da corrente 

induzida s6 nos interessa a componente da corrente paralela ao fio em cada ponto, isto 
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é, a di;. Juntando tudo isto e lembrando que estamos considerando cada elemento de 

c:orrente como sendo neutro eletricamente, vem que a fem12 em di; devido a di; é dada 

por (Maxwell, 1954, Vol. 2, Ca.p. 23): 

(4.20) 

Dividimos as forças por dq2+ para obter a.lgo como um campo elétrico genera.lizado, 

e o fa.tor 2 vem pelo fato de estarmos considerando nas forças as contribuições das cargas 

positivas ( dq2+) e negativas ( dq2_) simultaneamente. 

Como já afirmamos, queremos estudar não só o caso em que a intensidade da corrente 

no primário varia no tempo, mas também quando o circuito primário translada como um 

todo. As velocidades das cargas positivas e negativas em cada elemento são então dadas 

por 

( 4.21) 

(4.22) 

(4.23) 

... df;_ ... v,_ = --;u- = V2-d • (4.24) 

Nestas expressões V é a velocidade de translação do Circuito 1 como um todo relativo 

ao circuito 2 (como medido num sistema de referéncia. inercia.l), e o sub-índice d significa 

a velocidade da carga em relação ao fio, isto é, a velocidade de "drifting" ou de migração, 

ou seja, a velocidade responsável pela corrente elétrica. 

Além disto vamos assumir a hipótese de Fechner, isto é, ii1-d = -iiJ+d e ii2-d = -ii2+d· 

Esta hipótese era comum no século passado e foi usada. tanto por Weber quanto por Ma.xwell 

(lembrar que o elétron só foi descoberto em 1897). Neste livro não vamos tra.tar do caso 
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mais geral e mais frequente em que as velocidades VJ+4 e ii't-4, assim como V2+4 e ii2-d, 

têm m6dulos diferentes, apesar de não impormos nenhuma relação entre VJ+4 e ii2+d· 

Assumindo então a hipótese de Feclmer e as relações (4.21) a (4.24) em (4.20) vem 

(ver exet·cício 4.3): 

(4.25) 

Seguindo MaxweU mais uma vez, vamos considerar todas as grandezas do sistema, 

como r 12 por exemplo, como funções de apenas três variáveis independentes: 11 , lz e t. Isto 

é, 11 é um comprimento medido sobre o circuito 1 a partir de uma certa origem arbitrária 

pré-estabelecida, com sentido positivo ao longo da direção da corrente, o mesmo ocorrendo 

com 12 em relação ao circuito 2, e t é o tempo. Este procedimento é claramente correto e leva 

aque,porexemplo,ru = r12(1t. lz, t)edr12 = dlt(8r12/81t)+dlz(8r12/812 )+dt(ôr12 /ôt). 

De (3.3) vem, com dql+ = ÀJ+dl1 : 

( 4.26) 

Em geral quando se varia a intensidade da CÇlrrent~ num fio metálico o que muda é a 

velocidade de migração das cargas, mas não o número QU densidade de portadores (elétrons 

livres). Isto em (4.26) leva a que (ver exercício 4.4): 

(4.27) 

Jogando (4.26) e (4.27) em (4.25) obtem-se, usand1> que t? = (p0 e0 )-
1

, e integrando 

sobre os dois circuitos: 

( 4.28) 
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Usando a regra da cadeia no último termo vem que 

f -p. i i {21 ('V· di;)(ru ·di;) 31 (ru · V)(ru · d~)(ru ·di;) 
em12 = - 1 2 - 1 2 

411" c, c, rn rl2 

ô [r (r12 • d~)(i'n ·di;)] 1 (r· di;) 8 (. d~l ) +- 1 - 1 ru · 1 ôt r 12 rn ôt 

I (fu · d~) 8 (. di) 1 (r,.· d~)(rn ·di;) ôr,.} 
-, ôtru· •+• 2 ôt . 

r12 r12 
(4.29) 

Usando que ((4.32) e (4.33) seguem do fato de os circuitos não girarem, apenas 

transladarem, enquanto que (4.30) e (4.31) são derivadas no exercício 4.5): 

pode-se mostrar que (ver exercício 4.6): 

ar;. -v 
ôt - , 

8d~ =o, 
ôt 

~ 

ôd/2 -o 
ôt - , 

ô(. dl~) V·di; (ru·V)(i'u·di;) 
ôt ru·•= - . 

r12 r12 

Com estes valores em ( 4.29) se obtem 

f -p.i i {ô [r (r ... d~)(ru·di;)] 1 ('V·d~)(ru·di;) emu = - - 1 + 1 2 411" c, c, ôt ru r 12 
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_1 (V· di;)(ru · d~)} 
1 2 • 

r12 
(4.36) 

Lembrando que 11 (V· d~) pode sair para fora da integral em Cz pode-se mostrar que 

a segunda integral é nula (ver exercício 3.7, letra (B)). Da mesma maneira pode-se mostrar 

que a terceira integral é nula fa.zendo'se.primeiro a integral em Ct. De tal forma ficamos 

I -p. d [I i i (ru · d~)(ru ·di;)] emu = --- 1 • 
4.. dt c, c, ru 

(4.37) 

Do exercício 3.6 e da definição ( 4.8) vem finalmente que a partir da força de Weber 

se ch~ga na relação 

(4.38) 

que é exatamente uma das maneiras de se expressar a lei de Faraday, como vimos em 

(4.10). 

Também pode-se chegar num outro resultado interessante relacionado com a energia 

potencial e com a indução a partir da energia potencial generalizada de Weber (2.9). 

Como vimos no capítulo 3, a energia potencial de dois elementos de corrente 11 d~ e 12di; 

de acordo com (2.9) é dada por (ver exercício 3.2): 

~U = /loltlz (ru. d~)(•'tz. di;) (4.39) 
4.. ru 

Usando o exercício 3.6 e a definição 4.8 vem que a energia potencial total da interação 

entre dois circuitos Ct e Cz é dada por, de acordo com Weber: 

( 4.40) 

E então é fácil ver que também a partir da energia potencial de Weber se pode chegar na 

lei de indução. 

Sugerimos fortemente a leitura dos livros de O'Rahilly, Maxwell e Whittaker nas 

páginas indicadas anteriormente para que seja feito um aprofundamento histórico e crítico 

da lei de indução. 
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4.4 - Exercícios 

4.1 - Lei de indução. 

(A) Seja Ã definido por (4.4). Aplique o rotacional V2 x em ambos os lados desta 

equação para encontrar que B(i'i) = V2 x Ã, onde B(i'i) é dado por (3.35) trocando-se os 
• 

índices 1 e 2. 

(B) Use este resultado e o teorema de Stokes para mostrar que 

CA=J Ã-di".=f I B·dã·=~B-Jr.;2 .fs2 
(C) Conclua então que no caso em que não há baterias ligadas ao circuito, a lei de 

indução de Faraday pode ser expressa como 

R.I. = _!_ [/ I jj. dã·] =_!_[i Ã· di;] 
dt } 5 , dt lc, 

4.2 - Coeficiente de indutância mútua. 

(A) SejaM definido por (4.8). Use os resultados do exercício anterior para mostrar 

que 

~ B &través de c2 = ltM o 

(B) Comece tudo novamente para mostrar que 

(C) Use o resultado da letra (A) para colocar a lei de induÇão na forma (4.10). 

4.3 - Use (4.19) e (4.24}, juntamente com a hipótese de Fechner ii;- = -iii+, para 

chegar em ( 4.25). Observe que mais uma veo o termo Coulombiano na força de Weber não 

vai influenciar em nada na lei de indução (ver também exercício 1.8). 

4.4 - Aqui vamos derivar ( 4.27) a partir de ( 4.26). 
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(A) Mostre que de (3.3) e (3.4} vem, lembrando que as velocidades das cargas .são 

paralelas aos fios: 

(B) Como a variação da corrente em fios metálicos muda apenas a velocidade de 

migração das cargas mas não suas densidades vem 

di1 OI1 
AH(ai+- a;_)= dt = {Jt , 

com o qual se chega em ( 4.27). 

(C) Outra maneira é considerando as variáveis como função da posição no fio e do 

tempo. 

Mostre então de ( 4.26) que, supondo a constância das cargas: 

(D) Como a corrente é constante ao longo de todo o fio, vem que OI,fOI, = O, e 

portanto diJ/dt = OI.jOt. Por outro lado temos que naturalmente {J~j{J/1 =O, embora 

como vimos no capítulo 3 não necessariamente temos {J~fO:r: 1 = O. Como a situação 

que está sendo estudada é apenas a de translação do circuito, sem rotação, vem que 

O(d~)/Ot =O. Junte tudo isto para chegar então em (4.27). 

4.5- (A) Prove (4.30) usando que r12 é função de 11, 12 e t. 

(B) Prove (4.31) usando que r12 é função de 11 , 12 e t. 
' 

(C) Prove (4.31) usando a letra (A) e o fato de que r 12 = (r12 • fi 2)lf2. 

4.6- Prove (4.34) a (4.35) usando (4.30) a (4.33) e a regra da cadeia para a derivada 

de um produto escalar. 

4.7- Refaça toda a seção 4.3, de (4.19) até chegar em (4.38). 
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IS) Forças de Weber e de Lorentz 
o 

IS.l - Introdução 

Como vimos nos capítulos anteriores, a lei de Weber segue todos os prineípios de 

conservação da física clássica: momento linear, momento angular e energia. Com ela se 

deriva também a força de Ampere entre elementos de corrente. Por último vimos que 

também se derivam a partir dela o conjunto das equações de Maxwell (lei de Gauss, lei 

circuitai de Ampere, lei da ausência de monopólos magnéticos, e lei de indução de Faraday ). 

No caso particular da lei circuitai de Ampere foi necessário, além da força de Weber, 

introduzir a equação de conservação de cargas para se obter a corrente de deslocamento 

de Maxwell. O inverso foi mostrado no exereício 1.2, isto é, a partir da.s leis de Gauss 

e Ampere, com corrente de deslocamento, pode-se derivar a equação de eonservação de 

carga.s. O importante a ser enfatizado aqui é que a força de Weber é completamente 

compatível com a.s equações de Maxwell. 

Disto vem que a única diferença da eletrodinâmica de Weber em relação ac;> 

eletromagnetismo clássico é na força que atua sobre as cargas. Le!Jlbramos que isto não é 

fornecido pelas equações de Maxwell, que dão apena.s os campos 11erados pelas carga.s 

mas não dão como as cargas sentem ou reagem à presença de q!Jilpos externos. No 

caso do eletromagnetismo clássico isto é dado pela força de Lol'<lJltz, enquanto que na 

eletrodinâmica de Weber temos a pr6pria força de Weber. 

Neste capítulo vamos comparar estas duas forças. 
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5.2 - Potenciais de Lienud-Wiecloert 

A maneira mais direta de comparar as duas expressões de força é obtida com o auxílio 

dos potenciais de Lienard-Wiechert. Antea um pouco do contexto histórico. A idéia de que 

a interação entre os cqg>os nio é instant~ea 111M leva tempo para se propagar de um corpo 

ao outro é antiga. Mas no caso do eletroma~tismo o primeiro a expressá-la claramente 

parece ter sido Gal188 em 1845 numa carta endereçada a Weber (Whittaker, 1973, Vol. 

1, pág. 240; Maxwell, 1t5f, Vol. 2, arti«o 861, pág. 4i9; O'Rahilly, 1915, Vol. 1, pág. 

226). Em 1858 lliemann (1826 · 1866), estudante, amigo e auxiliar de Weber !' GauBB na 

universidade de Gottingen, introduziu a idéia do tempo retardado na física. Esta consiste 

em dizer que a força sentida por uma carga q1 localizada em fi no tempo t devido a uma 

outra carga q2, depende da posiçio, velocidade e aceleração de q2 no instante retardado 

t- r 12/ c. Nesta expressão r 12 é a distâncie. entre as duas cargas e c é a velocidade com que 

viaja a interação, que se &88ume como sendo a velocidade da luz. O trabalho de lliemann s6 

foi publicado em 1867 (lliemann, 1867 e 1977), no mesmo ano em que Ludwig Lorenz (1829 

• 1891), um físico dinamarquês (não confundir com o H. A. Lorentz da força Qe Lorentz), 

publicou um trabalho de certa forma equivalente onde desenvolveu independentemente a 

idéia do tempo retardado (Lorenz, 1867). Pode-oe então dizer que lliemann e Lorenz são, 

com justiça, os introdutores do tempo retardado na física. 

Em 1867 o físico alemão Clausius (1822 • 1i8S) obteve uma lei de força análoga à que 

Lorentz introduziria vinte anos depois, e mostrou que com ela se podia derivar a força de 

Grassmann (ver Clausius, 1880 ). Lorentz introduziu sua lei de força entre 1892 e 1895, 

e sua diferença em relação a Clausius é que na expfeBSão da força já incluía o tempo 

retardado. Em 1898 A. Lienard deu um grande avanço em relação ao trabalho de Lorentz 

ao trabalhar com os potenciais retardados devido a cargas discretas (Lienard, 1898 a, b, c). 

Este trabalho foi seguido em 1900 por um outro na mesma linha eiiCrito por E. Wiechert 

(Wiechert, 1900). Por eote motivo os potenciais que vamos apresentac recebem usualmente 

o nome de potenciais de Lienard-Wiechert. Deve-se ainda lembrar que K. Schwarzscbild 

apresentou avanços importantes nesta mesma direção (cálculo do potencial eletrodinâmico, 

etc.) em 1903 (Schwaruchild, 1903 a, b, c). 
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Ap6s este preâmbulo apresentamos as fórmulas correspondentes. A força de Lorentz 

(1.32) expressa em termos dos potenciais </>e Ã através de (1.31) e (1.26) fica na forma, 

no caso da força de q2 em q1: 

(5.1) 

Nesta expressão V1 e V1 x são para ser obtidos no ponto onde está a carga 1, enquanto 

que </>2 e Ã2 são os potenciais gerados pela carga ~. 

Os potenciais de Lienard-Wiechert são os análogos de (3.49) e (4.4), invertendo os 

índices 1 e 2, e substituindo Idf por piidV, isto é 

(5.2) 

(5.3) 

Nestas expressões o grande avanço é que agora os potenciais no ponto fi no tempo t são 

obtidos em função de onde q2 estava no tempo retardado t• = t - ru /c. As grandezas 

com asterisco são para ser entendidas como sendo obtidas no temp~ retardado, isto é, 

r,.• = i'2(t*), etc. 

Através dos trabalhos de Lienard, Wiechert e Schwarzschild pode-se obter diretamente 

a força entre duas cargas pontuais q1 e q2 destas expressões (isto não ~ simplesmente 

substituir P2dV2 por q2 , ver Whittaker, págs. 407 a 409). O caminho para a obtenção do 

resultado final é bem complicado e está além dos objetivos deste livro (para os interessados 

sugerimos O'Rahilly, 1965, Vol. 1, Cap. 7). O que nos interessa aqui é apenas o resultado 

final, que é obtido fazendo-se uma expansão em série de Taylor de todas as expressões que 

cont.enbam t• em tomo de t• = t. Fazendo isto e indo até termos em segunda ordem em 

1/c obtem-se (ver O'Rahilly, 1965, Vol. 1, pág. 220), de (5.1) a (5.3): 

Ti2 · ã2) _ rnã2]} 
2c2 2c2 + (5.4) 
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Um fato extremamente import8llte a ser enfatizado é que apenas E2 e B2 • em (5.4) 

são calculados no tempo retardado, já que do lado direito da última igualdade todas 

as grandezas (inclusive r 12 , f 12, ii2 e ã2) estão sendo calculadas e medidas no 

tempo t e não no tempo retardado t• (lembrar que já foi feita a exp8llsão de Taylor 

em torno de t• = t para se chegar aí). Embora a expressão geral da força tenha termos 

de infinitas ordens nas potências de 1/c, pegamos apenas até os termos de segunda ordem 

já que praticamente todos os fenômenos estudados do eletromagnetismo (como a força de 

Coulomb, a lei circuitai de Ampere, o campo magnético de Biot-Savart e a .lei de indução 

de Faraday) já surgem com precisão suficiente nesta aproximação. 

'Jroc8lldo os índices 1 e 2, e lembr8lldo que f21 = -fi2 vem: 

{ 
1 

[ ( 

~ -... • ... ... • -q1 ,. V] • V] F12 = q2 E1 + q2v2 x B1 :::< q2 -
4

- - 2- ru 1 + 
2 2 1ré0 r 12 c 

3 (1'12 · iii)
2 

TJ2 · ã,) ruã1]} - { -q, 1 V1 X r12} 
- 2 c2 + 2c2 + 2c2 + q2v2 X 4.-e. rf2 c2 · (5.5) 

São estas as expressões fundamentais que vamos comparar com a força de Weber. As 

equações (5.4) e (5.5) são as leis de força básicas do eletromagnetismo.clássico, 

No exercício 5.1 indicamos como que se chega no campo magnético de Biot-Savart e à 

força de Grassm8lln entre elementos de corrente a partir de (5.4) e (5.5). E como já vimos 

no capítulo 3, a partir daí se pode chegar em duas das equações de Maxwell (a de ausência 

de monopólos magnéticos e à lei circuitai de Ampere). No caso em que as cargas estão 

em repouso (ii1 = ii2 =O e ã1 = ã2 = 0), se obtem de (5.4) e (5.5) a força de Coulomb. 

E como vimos no capítulo 1 toda a eletrostática e !' lei de Gauss (primeira das equações 

de Maxwell) estão embutidas aí. A lei de indução de Faraday também sai de (5.4) e (5.5) 

seguindo-se um procedimento no geral equivalente ao que foi feito com a lei de Weber no 

capítulo 4 (ver ainda O'Rahilly, 1965, Vol. 2, págs. 572 a 581). 

Isto mostra que as equações de Maxwell são compatíveis não apenas com a força de 

Weber (como vimos nos capítulos 2 a 4) mas também com (5.4) e (5.5). Isto significa que 

as forças de Weber e de Lorentz não podem ser distinguidas desta m8lleira. Mas nas seções 

seguintes mostraremos procedimentos diversos para compará-las e distingui-las. 
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5.3 • Comparação entre as Forças de Weber e de Lorentz 

A força de Weber é dada por (2.1) ou (2.4), isto é: 

3(. ~ )2 ~ ~ )] ,;'( - 2 rn . Vn + ru . an = -l't2 (5.6) 

O primeiro aspecto a ser observado na comparação entre u duas leis é que a força 

de Weber sempre satisfaz ao princípio de ação e reação na forma forte, enquanto que a 

força de Lorentz não satisfaz a este princípio nem mesmo na forma fraca, a não ser em 

alguns casos bem específicos. Isto pode ser visto somando (5.4) e (5.5), e observando que 

os termos restantes não vão necessariamente se cancelar. 

A parte Coulombiana é a mesma em Weber e em Lorentz. Vamos agora analisar as 

componentes que dependem das velocidades e acelerações. Vamos nos concentrar em F21 

e chamaremos de fonte a q2 e a tudo aquilo que tiver o índice 2 em (5.4) 41 na primeira 

igualdade de (5.6). Chamaremos de carga de teste ou carga de prova (isto é, a carga que 

sente a força) a q1 e a tudo aquilo que tiver o índice 1 em (5.4) e pa primeira i~ualdade de 

(5.6). 

Em termos das fontes observa·se que a força de Lorentz tem termos depe11de11tes 

lillearmente da velocidade, ii1 x ( ii2 x r 12), (isto vem das cargu que geram o campo 

magru!tico de Biot·Savart e a força de Grassmann), e termos que dependem do quadrado 

da velocidade, isto é, [ii2 · ii2/2- 3(r12 · ii2)2 /2)r12 • Tem ai11da termos que dependem da 

ac:eleraçã.o, isto é, -[(rn · ã2)r12 + rt2ã2)/2. São estes os termos que vão dar a illduçã.o de 

Faraday em di2/dt. A força de Weber também tem termos com este comportamento geral, 

embora com peculiaridades próprias. Os termos proporcionais à velocidade da foote são 

[-2t11·ii2 +3(rn ·ii1)(rn ·ii'2)]r12• que como já virlloa são os termos que serão respoosáveio 

pela campo magru!tico e pela força de Ampere entre elementos de corrente. Os termos 

proporciOII&Íll ao quadrado da velocidade da fonte são [ii'2 · ii'2- 3(r12 • ii'2)2/2]r12• Já o 

termo proporcional à aceleração da fonte é -( rn · ã2 )ru. Como já vimos é este o termo 
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responsável pela indução de Faraday em dl2/dt. 

Embora as duas leis não sejam exatamente iguais nestes aspectos, o comportamento 

geral é parecido e em geral elas vão dar os mesmos resultados, em particular quando se 

tem circuitos fechados. Uma exceção a este fato é nos termos proporcionais ao quadrado 

da velocidade das fontes, e discutiremos um caso particular disto na seção 5.5. 

Em termos das cargas de prova, as que sentem a força, observa-se que Lorentz 

tem termos proporcionais a Üt dados por -Üt X (i72 X r12 ). Como já vimos, os termos 

proporcionais a i71 em Weber são [-2ii"1 • i72 + 3(r12 • ii"1 )(r12 · i72)]r12 .. Na situação 

geral de circuitos fechados estes termos vão ser equivalentes. Por outro lado Weber 

tem termos proporcionais ao quadrado da velocidade da carga de prova dados por 

[V1 • i71 - (3/2)(r12 · i71)2]r12 • A possível relevância destes termos (não há semelbante 

na força de Lorentz) é discutida na seção 5.6. 

Uma distinção fundamental que ocorre entre as forças de Weber e de Lorentz é que 

enquanto a força de Weber depende da aceleração da carga de prova na forma (r12 · ã1 )r12. 

Recentemente aplicamos uma força de Weber à gravitação e mostramos a intportância 

deste termo de Weber (Assis 1989 a). Em particular indicamos eomo que com ele se 

pode derivar uma lei equivalente à segunda lei de Newton e a precessão do periélio dos 

planetas. Também conseguimos derivar neste modelo, sem ser necessário postular isto 

inicialmente, a proporcionalidade entre as massas inerciais e gravitacionais. Com isto foi 

possível implementar quantitativamente neste modelo o princípio de Mach, proposto pelo 

filósofo e físico experimental austríaco Emst Mach (1838 - 1916) em 1883 (Macb, l989). 

Para uma análise do princípio de Mach ver: (Yourgrau e van der Merwe, 1968; Scbiff, 

1964; Reinhardt, 1973; Phipps, 1978; Raine, 1981; Barbour e Bertotti, 1977; Barbour, 

1989; Jaakkola 1987 e 1991; Roscoe 1991 a, b, c). A hase deste princípio é a afirmação de 

que as forças "fictícias" (força centrífuga, de Coriolis, etc.) são de fato reais e têm origem 

gravitacional na interação de qualquer corpo com o restante do universo. O modelo que 

apresentamos é preliminar e limitado (por exemplo, se baseia na ação à distância), mas 

pelo menos tenta trazer elementos novos na discussão do princípio de Mach. Neste livro 

não trataremos da lei de Weber aplicada à gravitação já que nosso objetivo principal é a 

eletrodinâmica de Weber. De qualquer forma nos parece relevante chamar a atenção para 
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estes novos caminhos e suas linhas de pesquisa. Para uma aplicação de forças do tipo da de 

Weber e similares à gravitação ver: (Assis 1989 a; Eby 1977; Edwards 1974; Ghosh 1991; 

Solrol'skii e Sadovnikov, 1987; Treder 1972; Treder, von Borzeszkowski, van der Merwe e 

Yourgrau, 1980; Sciama 1953; Wesley 1990 b e 1991, Capítulo 6; Brown 1955 e 1982). 

Uma outra maneira de analisar a força de Weber é olhando para sua forma (2.1 ). 

Lá vemos que a força é uma soma de três termos. O primeiro é a força Coulombiana 

usual, responsável pela eletrostática e pela lei de Gauss. O segundo é o que dá os efeitos 

magnéticos da lei de Ampere. E o terceiro dado por q;q;r;;í';;/(47re.é'r;;) é o responsável 

pela lei de indução de Fàraday e pelos efeitos de inéda quando aplicados à gravitação. É 

este termo também um dos que dá os efeitos de radiação eletromagnética a partir da lei 

de Weber (lembrar que a intensidade da radiação de dipolo, ou de uma antena, cai com 

1 f r a grandes distâncias). 

Há um outro aspecto que pode ser visto claramente pela força de Weber ou pela de 

Lorentz. Este se refere às ordens de grandeza entre as forças elétricas, magnéticas e os 

fenômenos de indução. De (5.4) a (5.6) vê-se quç todos os termos, exceto o de Coulomb, 

têm é' no denominador. Já no numerador apresentam termos da ordem vf, v1v2, v~, ruat 

e r12a2. Mas são .exatamente estes termos os responsáveis pelo campo magnético, pela força 

de Ampere, e pelos efeitos de indução. Logo para velocidades e acelerações baixas como as 

que existem usualmente (corrente de algumas dezenas de Amperes, camp.os magnéticos da 

ordem de alguns Gauss, etc.), os efeitos magnéticos e de indução de corrente são de segunda 

ordem em relação aos efeitos eletrostáticos, Isto é, se dois sistemas estão interagindo entre si 

e há uma carga elétrica líquida (isto é, não nula) nos dois sistemas então usualmente a força 

Coulombiana suplanta os efeitos magnéticos e indutivos, e embora estes efeitos existam eles 

ficam mascarados. Para que estes efeitos apareçam com clareza é em geral necessário que 

nos sistemas não haja carga líquida, ou que esta seja extremamente pequena. Neste caso 

quase não haverá força Coulombiana e os efeitos magnéticos e indutivos aparecerão como 

os fenômenos principais. Exemplos deste último caso é quando um ímã permanente (neutro 

eletrieamente, gera B mas não E) interage com uma corrente elétrica num fio ou com outro 

ímã, ou quando dois fios com corrente interagem entre si. 

Nas próximas seções deste capítulo discutiremos em maiores detalhes as distinções 
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entre as forças de Weber e de Lorentz. 
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5.4 - Duas Cargas em Movimento Retil(neo Uniforme 

Para perceber a diferença de enfoque ao tratarmos de um problema pela força de 

Lorentz ou de Weber vamos discutir aqui casos simples da força entre duas cargas. O 

problema completo e geral (incluindo acelerações) de duas cargas interagindo entre si pela 

força de Weber (problema de dois corpos) está desenvolvido em (Clemente e Assis, 1991) e 

(Assis e Clemente, 1992). Nestes artigos estudamos o "espalhamento de Rutherford" com 

um potencial de Weber, as órbitas elípticas que precessam, a velocidade limite obtida com 

a eletrodinâmica de Weber, etc. Não entraremos nestes aspectos neste livro. Nesta seção 

nos limitaremos a casos simples que não envolvem a aceleração. 

(A) Cargas em repouso. 

No primeiro caso temos duas cargas q1 e q2 separadas pela distância r1~ = rur/ e 

que estão paradas no referencial do laboratório (que vamos considerar como um referencial 

inercial). Para isto podemos supor que a força Coulombiana é contrabalançada por alguma 

outra força como, por exemplo, por uma força elástica (supondo as duas cargas ligadas 

pOr uma mola). Neste caso como não há nenhum movimento das cargas vem que as forças 

de Lorentz e de Weber ficam com a mesma forma, isto é, como uma força Coulombiana 

(ver figura 5.1): 

(5.7) 

y 

o X 

Figura 5.1 
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(B) Cargas em movimento retilíneo uniforme paralelo. 

Vamos supor agora a mesma situação vista por um observador O' que ae move em 

relação ao laborat6rio com uma velocidade constante -Vi, onde supomos V<< c. O que 

este observador vê está representado na figura 5.2. 

Naturalmente temos ql = ql> q~ = ~, i' "" i, y' = g e ri, = r12. Como estamos 

supondo uma velocidade constante vem que ã I = ã ~ =O. De (5.6) vem então (vamos 

representar pelo índice 1 as forças vistas pelo observador O') 

y' 

O' 

rcw• rcw q, qo Y rcw• .r:n = l"i,n = -- 2 = -.r12 411"&0 r 12 

q: 

' 1'2 I ty· 
q' 

2 

x' 

Figura 5.2 

(5.8) 

Para a lei de Weber não há então diferença em estarmos no referencial do laborat6rio 

ou no referencial O' já que não há movimento relativo entre as cargas nos dois casos. Isto 

ilustra mais uma vez o caráter relaciona! da força de Weber, já que esta tem sempre o 

mesmo valor em qualquer referencial. 

Como estamos supondo V 2 << c2 podemos usar (5.4) e (5.5) como expressões corretas 

da força de Lorentz válidas até segunda ordem em 1/c. De (5.4) e (5.5) vem então que 

~L' ~L' [ q2 ( V
2

) Y ] F,, = -F,2 = q, 411"&o 1 + 2c2 rf2 
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V árias coisas se observam desta equação. A primeira é que a força de LoreDtz continua 

satisfazendo o princípio de ação e reação neste caso no referencial O'. No primeiro colchete 

de (5.9) temos o campo elétrico de q2 no referencial O', que é maior pelo fator (1+ V2 /2.:2) 

do que o campo elétrico visto em O. No segundo colchete temos o campo magnético devido 

80 movimento de q2 , campo este que não existia no referencial O. O resultado combinado 

destas duas modificações é que a força eletromagnética resultante sofre uma diminuição 

pelo fator (1 - v• /2.:2) em relação à força de Lorentz no referencial o. 
E é por este motivo que se diz no eletromagnetismo clássico que os campos elétrico 

e magnético se transformam um no outro dependendo do referencial. Por isto também se 

afirma que não há realidade física em nenhum deles separadamente, mas apenas na força 

eletromagnética como um todo. 

(C) Cargas em movimento retilíneo uniforme ortogonal. 

Vamos agora supor uma situação física diferente. Agora ainda temos duas cargas q1 

e 'l2 se movendo com velocidade constante (isto pode ser obtido com forças mecânicas 

externas 80 sistema), ãt = ã2 = O, mas de tal forma que no instante t elas se encontrem 

na situação da figura 5.3: 

y 

o X 

Figura 5.3 

- ' v, ;::: v, x, 
!!, ___ __. 

Aplicando a força de Weber (5.6) neste caso obtem-se que 
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• [ 1 ( 2)] w ,,g. " 2 " w .F., = - 2 1 + - "• - .:2 = -.F,. 4ll"eo r 12 c2 2 
(5.10) 

Já. no caso de Lorentz vem de (5.4) e (5.5) que 

(5.11) 

ff,L =- g.q2 ...!_ [(1 + ~ )y +~i] . 12 4ll"e. r~2 2c2 c2 (5.12) 

Este exemplo ilustra mais ~a vez que Weber sempre satisfaz o princípio de ação e 

reação na forma forte, enquanto que Lorentz não o satisfaz nem mesmo na forma fraca em 

alguns casos. A situação da figura 5.3 é o análogo para cargas da situação da figura 3.1 

para elementos de corrente neutros. 

No exercício 5.2 são discutidas outras situações com as quais se pode ver a distinção 

entre as forças de Weber e de Lorentz. 
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5.5 - Campo Elétrico Devido a uma Corrente Estacionária 

Nesta seção trataremos de uma diferença específica entre as forças de Weber e de 

Lorentz que pode em princípio ser testada no laboratório. Esta diferença tem a ver com 

a componente da força proporcional ao quadrado da velocidade das fontes. Este é um 

assunto que desenvolvemos num artigo recente: (Assis, 1991 a). 

Supomos então um fio reto infinito colocado em repouso ao longo do eixo Z. Neste 

fio supomos haver uma corrente estacionária 12 que não varia com o tempo. Supondo que 

o fio seja um condutor metálico usual temos que apenas os elétrons se movem. De . tudo 

isto vem: i72+ = O, ã2+ = O, Ü2- = Vvz, e ã2_ = O (designamos pelo índice 2 às cargas 

do fio e V v é a velocidade de migração ou drifting dos elétrons). Como usualmente ocorre 

na prática, supomos que o fio é neutro eletricamente, Ã2 _ = -À2+, onde À é a densidade 

linear de carga. Calculamos então a força que este fio exerce sobre uma carga q1 situada 

em r; com velocidade i71 e aceleração ã1 (ver figura 5.4 ): 

-a, 

-v, 

--------------L---------~~--------Z o I 

Figura 5.4 

Fazendo os cálculos a partir do eletromagnetismo clássico vem que a força de Lorentz 

resultante neste caso é dada por (ver exercício 5.3): 

jj p.I • • 
2 = --2-'{1) . 

1rPJ 
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Nestas expressões us8.1ll08 coordenadas cilíndricas (fi = pl{it + Zt z , ZJ = O, 'Pt é o 

ângulo azimutal e Pt é a distância de q1 ao fio). Temos ainda que !2 = À2-Vn = -À2+ Vn, 

onde À2- é a densidade linear de carga dos elétrons livres no fio. Vemos então que segundo 

Lorentz o fio não gera campo elétrico, mas apenas um campo magnético poloidal que cai 

com 1/r. 

Por outro lado usando a força de Weber ( 5.6) obtemos que a força resultante do fio 

em 9t é dada por (ver exercício 5.4, e Assis, 1991 a): 

(5.15) 

onde B2 é dado por (5.14) e EM é dado por (ver Assis, 1991 a; e Wesley, 1987 b, e 1990 

a, b): 

E~ l'oii2 Vnl. 
M=-4 Pt· 

1rPt 
(5.16) 

Vemos então que a única diferença entre Weber e Lorentz é que a força de Weber prevê 

uma força adicional em q1 dada por q1 EM. Esta força é independente da velocidade de q1 

e então podemos chamar EM de um campo elétrico. Só que este não é um campo elétrico 

usual pois o fio é neutro eletricamente e ele só surge devido ao fato de os elétrons no fio 

se moverem enquanto os íons positivos ficam parados, de tal forma que a força de Weber 

de cada uma destas componentes em q1 é diferente. Vemos então que este campo elétrico 

surge devido ao movimento das c~ fontes ( "motional eleetric tield") e é proporcional 

ao quadrado da corrente, e aponta sempre na mesma direção independente da direção da 

corrente. 

Embora esta força q1 EM não teulta análogo no eletromagnetismo clássico, não é fácil 

de ser testada experimentalmente pois é muito pequena, de segunda ordem (proporcional 

a V!J/ c'). Por exemplo, se tivermos uma corrente de 103 A e uma carga elétrica q1 típica 

de laboratório, de q1 ~ 10-to C, então esta força será da ordem de 10-13 N para uma 

separação Pt ~ 10 em. Esta força é extremamente pequena e difícil de detectar. O 

melhor experimento de que temos conhecimento para tentar detectar tal força é devido 

a Edwards e outros (Edwards, Kenyon e Lenton, 1976). Eles mediram uma diferença de 
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potencial associada a este campo e encontraram algo desta ordem de grandeza. Além 

disto conclwram que o campo apontava radialmente em direção à corrente, independente 

do sentido em que esta flwa, e que era proporcional ao quadrado da corrente. Apesar de 

todas estas evidências não se pode dizer que o experimento seja conclusivo e mais pesquisas 

experimentais são necessárias antes de se tirar qualquer conclusão. 

Alguns artigos que têm saído na literatura relacionados a esse assunto estimulante: 

(Bartlett e Ward, 1977), (Bonnet, 1981), (Curé, 1982), (Sansbury, 1985), (Gray, 1988, 

págs. 1-4 e 1-5), (Hayden, 1990), (Ivezié, 1990), (Bartlett e Maglic, 1990), (Bartlett e 

Edwards, 1990), (Kenyon e Edwards, 1991); ver também (O'Rahilly, 1965, Vol. 2, págs. 

588-590). 
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S.6 - Forças Dentro de um Capacitar 

Uma outra componente da força de Weber que não tem análogo no eletromagnetismo 

clássico é aquela que depende apenas do quadrado da velocidade da carga que sente a força, 

mas que não depende da velocidade das cargas-fonte. A seguir ilustramos uma situação 

onde esta componente aparece explicitamente. Este é um assunto que desenvolvemos em 

dois artigos recentes: (Assis, 1989 b, Assis e Caluzi, 1991}. 

Seja então um capacitar de placas paralelas com separação entre as placas d muito 

menor do que o tamanho das placas L, d < L, de tal forma que para os cálculos possamos 

supor as placas infinitas (ou seja, vamos desprezar os efeitos de borda}. Supondo as placas 

situadas nos planos x = x. e x = -x., com densidades superficiais de carga 11 A e -11 A, 

respectivamente, vem que o campo elétrico elássico no interior do capacitar é dado por 

(5.17} 

onde i é um versar apontando da placa negativa à positiva: 

1-+-o~x 

o 

Figura 5.5 

Como o capacitar não gera nenhum campo magnético e a situação é estacionária no 

tempo, vem pela força de Lorentz que a única força que pode atuar sobre uma carga q1 

que se move em seu interior é dada por q1Ec· 
Já com a força de Weber a situ.a.ção não é tão simples. Usando (5.6} pode-se calcular a 

força em q, neste caso e o que se obtem, supondo r, = x,z ( -x. < x, < x.}, e q, podendo 
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estar em movimento e acelerada é (ver exercício 5.5 e a referência Assis, 1989 h): 

F- "'A{· 1 [vL =-q1 - x+- -x 
Eo c'l 2 

- v~z(v1 •y + v"z) + 2x1 a~z:i- x 1ã1]} , (5.18) 

onde ü1 é a velocidade de q, e ã1 sua aceleração relativo às placas do capacitar. 

Em primeiro lugar observamos que esta expressão s6 recai no caso clássico quando 

v1 = O e ã1 = O. Os termos a mais que aparecem nesta expressão e que não têm similar 

em nenhuma das componentes da força de Lorentz (5.4) são os termos que estão entre 

colchetes. Vemos que eles dependem do quadrado da velocidade da carga que sente a força 

e também de sua aceleração, e nada disto aparece na força de Lorentz. 

Não conhecemos nenhum experimento feito especificamente para determinar a 

existência ou não dos termos que aparecem dentro dos colchetes em (5.18). Em (Assis, 

1989 h) discutimos como estes termos fornecem uma explicação alternativa aos famosos 

experimentos de Kaufmann e Bucherer de variação da massa com a velocidade: Ou a 

força dentro do capacitar é dada por q, E c qualquer que seja a velocidade da partícula e 

a massa varia relativisticamente como m = m./(1 - v1/c'l)112 ; ou então a força dentro 

do capacitar é dada por (5.18) e a massa da partícula é uma constante qualquer que 

seja sua velocidade. Embora estas duas explicações sejam fisicamente bem distintas, 

ambas fornecem a mesma expressão para aquilo que é observado nos experimentos de 

Bucherer, pelo menos até segunda ordem, inclusive, em vJ/c. Após escrevermos este artigo 

descobrimos que as experiências de Kaufmann e Bucherer não tiveram precisão além da 

segunda ordem em v1 /c. Para a análise destes experimentos e desta informação ver: (Zalm 

e Spees, 1938) e (Faragó e Janossy, 1957). O que se pode concluir disto é que para esta 

situação experimental específica, as duas explicações são igualmente satisfatórias. 

Além disto Wesley mostrou recentemente (Wesley, 1990 a, h) que no caso deste 

experimento (ver sua descrição em Rosser, 1964, pág. 193) as velocidades obtidas da 

lei de Weher e do eletromagnetismo clássico são funções diferentes dos campos Ec e B. 
Expressando o que é medido experimentalmente não mais em função das velocidades, mas 
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sim de E. e .ti, Wesley obteve que a lei de Weber também tem termos de quarta ordem 

e que estes são praticamente os mesmos que os da relatividade. Ou seja, mesmo que 

estes experimentos houvessem tido precisão até quarta ordem não seria possível distinguir 

as duas explicações alternativas. Para uma discussão maior sobre todo este assunto ver 

também (Assis e Caluzi, 1991; Moon e Spencer, 1955; O'Rahilly, 1965, Vol. 2, págs. 249 

a 250 e 613 a 622; e Bush, 1926). 
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5.7- Limitações da Lei de Weber 

Neste livro 
. . . VImos vanos aspectos positivos da força de Weber: É uma lei 

c:ompletamente relaciona! (tem o mesmo valor para todos os observadores), satisfaz o 

princípio de ação e reação na forma forte, e os prinefpios de conservação do momento linear, 

do momento angular e da energia. Além disto com ela se derivam a força de Coulomb e a 

força entre elementos de corrente de Ampêre. Vimos também como se derivam a partir de 

Weber as equações de Maxwell: lei de Gauss, da não existência de monopólos magnéticos, 

lei circuitai de Ampêre e lei de indução de Faraday. Apresentamos e discutimos os principais 

pontos da controvérsia Ampere contra Grassmann e os experimentos relacionados com isto. 

Então comparamos as forças de Weber e de Lorentz e vimos que elas são praticamente 

equivalentes em seus resultados. Mostramos que a única diferença é que a lei de Weber 

prevê alguns pequenos termos adicionais que não aparecem na força de Lorentz. Discutimos 

alguns experimentos ligados com estes termos e como eles ainda não são conclusivos para 

decidir a questão. Para uma discussão mais aprofundada destes e de outros experimentos 

ver (Assis, 1990 a). 

Apesar dos. aspectos positivos da lei de Weber mencionados acim":, devemos ressaltar 

que a força de Weber é apenas um modelo ele ipteração entre cargas que descreve uma certa 

classe de fenômenos. Como tal ela pode estu sujeita a limitações e seu grau de validade 

pode não ser ilimitado. Por exemplo, pode !ler que um modelo de interação mais completo 

que a lei de Weber inclua também termos de quarta ordem em v I c, do tipo ;.• I c•, ou térmos 

como á'rldt3 , etc. Caso isto seja verdade então a validade da lei de Weber iria apenas 

até a segunda ordem em v I c, inclusive. Isto é, para cargas que se movem a velocidades 

extremamente próximas à da luz pode ser que a lei de Wéber não se aplique como tal. No 

momento não sabemos se a lei de Weber tem ou não esta limitação de validade, mas nos 

parece importante alertar para esta possibilidade provável. Phipps, por exemplo (Phipps, 

1990 b, c), propôs uma energia potencial dada por UP = (q1q2141fé0 r12 )(1 :- r2 lc')112 

para resolver os problemas que Hehnhotz havia apontado na teoria de Weber, a saber, 

a existência do assim chamado "comportamento de massa negativa" (Helmholtz 1872; 

Maxwell 1954, Volume 2, Cap. 23, artigo 854, pág. 485; Whittaker, Volume 1, págs. 203-
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4 ). Embora. com este potencial Phipps tenha. sucedido em superar as críticas de Helmholtz, 

obviamente seu potencia.l ni.e é o único que pode fazer ioto. De qua.lquer forma. este é um 

exemplo específico de como genera.lizar a. eletrodinâmica de Weberr para. ordens superiores 

em vfc. 

Um outro aspecto que tem de ser lembrado é que apesar da força. de Weber incluir 

termos de velocidade e aceleração, ainda. assim ela. é uma. lei de ação à distância.. Outras 

forças deste tipo são a. força. gravita.ciona.l Newtoniana. e a. força. elétrica. Coulombia.na.. Leis 

deste tipo implicam em que se um corpo estava. parado em relação ao outro e de repente 

se move (devido a uma. força externa., por exemplo), o outro sente instantaneamente uma. 

mudança. de força., qua.lquer que seja. sua. distância. do primeiro corpo. Isto pode ser um 

aspecto positivo (Granea.u, 1990 a., b, c, d) em vista. das ações não locais que aparecem 

na. mecânica. quântica. Por outro lado pode ser que todas as interações viajem a. uma. 

velocidade finita. (por exemplo, com a velocidade da luz). Mas a lei de Weber, como ta.!, 

não descreve esta. última. idéia.. 

Aliás foi exatamente este um dos principais motivos pelos quai5 purante este século 

a. maior parte dos cientistas se concentraram na eletrodinâmica. clássica. (equações de 

Ma.xwell, mais a. força. de Lorentz e os potenciais de Liena.rd-Wiechert) e não na 

e~trodiniimica. de Weber. E isto porque vinte anos depois de Weber ter apresentado sua. lei 

de força. veio Maxwell e sua teoria. eletromagnética. da. luz. Embora. inicia.lmente a. teoria 

cde Maxwell não tivesse sido bem aceita no continente (França., Alemanha., Itália., etc.) 

c a. situação mudou completamente com as experiências de Hertz no período 1885 - 1889, 

que confirmaram experimenta.lmente as previsões teóricas de Maxwell. Uma descrição dos 

experimentos de Hertz se encontra em seu livro: (Hertz, 1962). A partir de então a. ênfase 

passou a. ser em teorias de campo nas quais "" interÍ.Ções viajam com a velocidade da luz, 

e não mais em teorias do tipo de ação à distância. 

Para. descrever ondas eletromagnéticas e um retardo na. propagação das interações 

a partir de teorias de ação à distância há a.lguma.s a.lternativa.s. Uma. delas é utilizando 

a lei de indução de Fa.ra.day num sistema de muitos corpos (Graneau, 1987 d). Uma. 

outra. maneira. de obter ondas eletromagnéticas ou efeitos retardados com a. lei de Weber 

é usando simultaneamente a equação de conservação de e&r!';as (1.45). Um exemplo disto 
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foi a obtenção da corrente de deslocamento na seção 3.5 usando esta equação. Lembrar 

que para a obtenção de ondBS eletromagnéticBS foi fundamental para Maxwell este termo 

da corrente de deslocamento. 

Uma outra maneira é introduzir diretamente na lei de Weber o tempo retardado. Isto 

é, substitui-se t por t - rufe em todos os termos da lei de Weber. Nos tempos recentes 

88 idéiBS de tempo retardado foram desenvolvidBS por Sciama (Sciama, 1953) e Brown 

(Brown, 1982), entre outros. Já a aplicação do tempo retardado especificamente na lei de 

Weber é devida a Moon e Spencer (Moon e Spencer, 1954 a, h, c), e a Wesley (Wesley, 

1987 h, 1990 a, h, 1991, Cap. 6). Para uma discllliSão suplementar sobre os difef!'ntes 

modelos de propagação do potencial ver ainda (Clausius, 1868) e (Archibald, 1986). Neste 

livro não discutiremos estes 88pectos já que eles estão além da eletrodinâmica de Weber 

em sua forma original. 

Um último aspecto que queremos lembrar é q~e a teoria de' circui~ elétric<Ís foi 

iuicialmente desenvolvida por Weber e Kircbhoff, com trabalhos importantes em 1856 e 

1857. O trabalho de Weber foi realizado um pouco antes que o de Kirchhoff, mas foi 

publicado com atraso. Embora eles tenham trabalhado independentemente um do outro, 

ambos utilizaram a eletrodinâmica de Weber como base do trabalho .. Em particular eles 

foram os primeiros a mostrar que uma perturbação elétrica (um pulso de corrente ou de 

voltagem, por exemplo) viaja num fio com resisténcia desprezível com uma velocidade 

igual à velocidade da luz no vácuo. O importante a ser ressaltado é que este resultado foi 

obtido a partir da teoria de ação à distância de Weber num problema de muitos oorpos 
(um fio único mas constituido de várias cargas). E isto foi realizado antes do surgimento 

da teoria de Maxwell, que só apareceu de forma completa em 1860- 1864. Para estas e 

outras informações relacionadas com este tópico ver: (Whittaker, Vol. 1, págs. 224- 236), 

(Rosenfeld, 1956), (O'Rahilly, 1965, Vol. 2, págs. 523- 535), (Junguiclrel e McCormmacb, 

1986, Vol. 1, págs. 87, 125- 146, 151- 155, e 296- 301). Ver ainda (Kirchhoff, 1857 a, h). 

Iniciamos este livro com as palavras de Maxwell. Vamos terminá-lo com as palavras 

de O'Rahilly, escritas em sua obra máxima (nosso grifo): Eledromagnetic Theof'!l - A 

Criticai Examination of FUndamentais. Neste trecho temos um resumo das coisas que 
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Weber realizou e das idéias que defendeu (entre colchetes vão nos""" palavras): 

"Se qualquer homem merece crédito pela idéia sintética que unifica os vários ramos 

da ciência elétrica e magnética, este homem é Wilhelm Weber. Hoje, mesmo aqueles que 

defendem a teoria do éter ou que professam serem relativistas aceitam estes princípios 

introduzidos ou desenvolvidos por ele: que a idéia de Ampere do magnetismo como 

sendo devido a micro-correntes pode explicar fenômenos relevantes; que a eletricidade 

tem uma estrutura atômica flsto é, granular ou corpuscular); que as correntes são tluxos de 

partículas; que as forças de Ampêre [entre elementos de corrente) agem di,.;tamente entre 

estas partículas e não entre os condutores; que a lei de Coulomb deve ser modificada 

para cargas em movimento; que, como disse Gauss, a. ação não é instantânea; que 

as leis da eletrodinâmica [força entre elementos de corrente de Ampere) e da indução 

podem ser deduzidas por uma soma estatística, a partir de uma fórmula de força para 

partículas [cargas) elétricas. Mesmo seu princípio balistico, submerso por tanto tempo 

pelos eteristas e relativistas, parece que provavelmente desafiará os físicos mais uma vez 

na forma desenvolvida dada a ele por Waltber rutz." (O'Rahilly, 1965, Vol. 2, pág. 535). 
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5.8 • Exercícios 

lí.l- (A) O campo magnético de Lorentz é dado pela segunda chave de (5.4). Supondo 

elementos de corrente neutros eletricamente, dq;_ = -dq2+ e dq2+ = À2+dl2 , onde dl2 

é o comprimento do elemento de corrente, some as contribuições das cargas positivas e 

negativas ao campo magnético e use (3.4) para chegar no campo magnético de Biot-Savart 

(3.8). 

(B) Agora vai-se usar toda a expressão (5.4). Suponha elementos de corrente neutros 

e que dq2- = -dq2+ = -À2+dl2, dq1- = -dqt+ = -Àt+dl,. Some então as forças entre 

os pares de carga usando (5.4) para chegar na força de Grassmann, isto é 

Nesta expressão J2 F2l{ é dado por (3.7) e (3.8), ou por (3.10). Para chegar nisto use 

ainda (3.3) e (3.4). 

Este exercício ilustra mais uma vez que a partir da força de Lorentz se c:hega na força 

de Grassmann, e não na força de Ampere. 

5.2 - (A) Use (5.4) a (5.6) para calculllr a força entre duas cargas que se movem ao 

longo do eixo X com mesma velocidade, isto é: r1 = !1'1Z1 r':! = !l'zZ1 ii1 = V.z, iii = V0 z. 

Compare Weber e Lorentz. 

(B) Compare novamente Weber e Lorentz, (5.4) a (5.6), quando fi= z 1z+y1g, 
z2z + !12fi, ii, = V.x e ii2 = V.fj. Observe se é previsto algum torque neste caso. 

5.3 - Derivação de (5.13). 

(A) Como o fio é neutro eletricamente vem que 4>2 = O. Como a corrente é estacionária, 

constante no tempo, vem quelJÃ2/ât =O. De (1.31) vem que: E,= O. Useentão(1.32) e o 

campo magnético de Biot-Savart (1.20) para chegar em (5.13). Para isto tem-se de calcular 

a integral (1.20) e pode-se usar, sem perda de generalidade, z, =o, tal que r, = z,z +lll!i· 
Tem-se ainda: di; = dz2z. 
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(B) Uma outra maneira de calcular o campo magnético B2 é usando a lei circuitai de 

Ampêre (1.49). Como a situação é estacionária vem que d~ Efdt = O. Use como circuito C 

um circulo centrado no eixo Z, onde passa a corrente 12 • Como por simetria B2 é poloidal, 

vem que B2 é paralelo a df. em cada ponto deste circuito. Como f f J. · ãa2 = lo, vem 

que se pode obter B2 de (1.49). Calcule-o para ver que é dado por (5.14). 

5.4- Derivação de (5.15). 

(A) Parta de (5.6) para calcular a força de um elemento de corrente em q,. Substitua 

q, por dq2 = J.2dz2. Suponha um elemento de corrente neutro eletricamente, isto é, 

À2- = -},2+· Some as forças de J.2+dz2 e À2-dz2 em q~, lembrando que f2 = z2z, Vo+ = 

O, ã2+ = O, ii2_ = Vvz, ã2_ = O. Use ainda fi = x1x + y1y, ii1 = tl~zX + v1,y + V~zz, 

e ã1 = G~z% + a1.,i) + aJ.tZ. 

(B) Integre o resultado anterior em Z2 de -oo a +oo. 
(C) Use os seguintes fatos para colocar o resultado anterior na forma (5.15) e (5.16): 

x, = Pl cos 'PI, y, = P1 sin 'P1, p, = x cos 'PI + y sin 'PI, tj>, = -i: sin <p1 + ii cos <p1, e que 

ê, x c.= (c,,a •. - G"G.,)x + (G~zG .. - G'"G.,)fi + (G~zG.,- G,,a •• )z. 

5.5 - Derivação de (5.18). 

(A) Use (5.6) para calcular a força de um elemento das placas em q,. Substitua q2 

por dqo = ±o A da2 , onde o A é a densidade superficial de carga na chapa de cima e da2 

um elemento de área. Sem perda de generalidade já que as placas são infinitas, coloque 

Yl = z, = O no tempo t. Deixe as velocidades e acelerações gerais de tal forma que 

it = Zv1z +Yv1, +Zv1., â1 = Xa12: +i)a1, +Za~z. Use coordenadas "cilíndricas" mas com 

o eixo de simetria sendo o eixo X. Some as contribuições de dq2+ e dq2 _ localizadas em 

(±x., Y•, ... ). 
(B) Integre o resultado anterior primeiro em cp2 de O a2 .. , e depois em P2 = (x~+yn1 12 

de O aR. 

(C) Faça o limite em que R tende a infinito. 

(D) Obtenha ent~ (5.18) rearranjando os termos. 
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APÊNDICE A 

As Origens e os Significados da Força Magnética F = qv x B 

Como vimos no capítulo 1, a componente elétrica da força de Lorentz (FE = qE, com 

E= -Vif>-lJÃfüt) já era usada desde pelo menos 1857 com Kirchhoff, quando ele est"reveu 

a lei de Ohm de maneira generalizada incluindo os efeitos de auto-indutância. O potencial 

vetor magnético Ã havia sido introduzido por Franz Neumann em 1845, onde mostrou que 

B = V x Ã, sendo B o campo magnético. Já a expressão para a força magnética teve uma 

origem posterior e bem mrus tortuosa, e este é o assunto deste apêndice. 

A primeira informação relevante a ser ressaltada é que ela é posterio~ à morte 

de Maxwell, ocorrida em 1879. Segundo Whittaker os primeiros a chegarem na força 

magnética foram J. J. Thomson (1856 - 1940) e O. Heaviside (1850 - 1925), em 1881 e 

1889, respectivamente (Whittaker, 1973, Vol. 1, págs. 306 a 310). Para uma análise bem 

detalhada dos trabalhos de Thomson e Heaviside ver (Buchwald, 1985, Apêndice Um). 

Um dos objetivos do trabalho de Thomson de 1881 (Thomson, 1881) era aaber de que 

forma um corpo carregado eletricamente é afetado por um ímã, Thomson segue a teoria 

de Ma.xwell e em particular usa a idéia de que uma corrente de deslocamento (efJE/üt) 

produz os mesmos efeitos que uma corrente de condução f usual, isto é, de que também 

gera B. Supõe então uma esfera uniformemente carresada se movendo num certo meio com 

constante dielétrica e e permeabilidade magnética p, e calcula a corrente de deslocamento 

num ponto externo Q. Depois calcula num outro ponto,extemo P o valor do potencial 

vetor magnético Ã devido a esta corrente de deslocamento em Q, e integra para todos os 

pontos Q do espaço. Contudo observa que o valor V· Ã neste ponto P é diferente de 

zero. Ma.xwell sempre assumia V · Ã = O e então para satisfazer a esta condição Thomson 

supõe a existência de uma outra componente em Ã, adicionando esta componente ao que 

já havia obtido para Ã (não justifica qual a origem física desta componente adicional de 

Ã). Através de B = V x Ã obtem então o valor de jj no ponto P. Calcula então o valor 

de H neste meio, H = B f p. Em seguida calcula a força de um ímã (que gera B) num 
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corpo carregado eletricamente que se move por este meio. Para isto calcula a energia de 

interação E = f f f ( B · i/ /2 )dV, e usa as equações de Lagrange para obter a força. Seu 

resultado final: 

... Ü X jj 
F=q 2 (A1) 

Este valor é metade do aceito no eletromagnetismo clássico hoje em dia. O aspt>cto 

mais importante que queremos ressaltar aqui é o significado da velocidade que aparece em 

(A1). Neste ponto Thomson foi bem cuidadoso. Ele chamava esta velocidade de velocidade 

T<al ("actual velocity") da partícula. Na página 248 de seu artigo ele afirma (nosso grifo): 

"Deve ser observado que aquilo que por conveuiência chamamos de velocidade real da 

partíeula é, de fato, a velocidade da partícula relativa ao meio atravé• do qual ela e•tá 

•e movendo," ... , "meio cuja permeabilidade magnética é p." Ou seja, para Thomson a 

velocidade v em (A 1) não era a velocidade da carga relativa ao éter 1 nem em relação ao 

íruã, e nem a velocidade em relação ao observador. 

Em 1889 Heaviside obtem (Heaviside, 1889): 

F=qvxB. (A2) 

A diferença principal de seu trabalho em relação ao de Thomson é que ele inclui, 

seguindo Fitzgerald em 1881, a corrente de convecção como fonte de campo magnético: 

Fora isto vem que Heaviside segue o trabalho de Thomson (um dos objetivos de seu artigo 

é corrigir o trabalho de Thomson). Como ele não faz nenhum comentário adicionaleóbi-e 

a velocidade v em (A2), pode-se assumir que também p;;,.a ele aquela é a velocidade d8: 

carga q em relação ao meio de permeabilidade magnética 1-' e constante dielétricà e. Isto 

pode ser visto pelo título de seu artigo. 

Em 1892 e 1895 o físico teórico H. A. ·Lorentz apresenta a conhecida expressão 

(Lorentz, 1892 e 1895): 

(A3) 
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Lorentz não cita Thomson nem Heaviside, e aparentemente ehegou na parte magnética 

desta expressão a partir da força de Grassmann substituindo Idlpor qv, embora ele também 

não cite o trabalho de Grassmann. Isto pode ser visto no livro mais famoso de Lorentz, 

The Theory of Electron.~ (Lorentz, 1915, págs. 14 e 15). Este livro é baseado em um 

curso que ministrou em 1906 na Universidade de Columbia, e foi editado pela primeira vez 

em 1909. Infelizmente Lorentz não especifica em (A3) em relação a que objeto, meio ou 

sistema deve ser entendida esta velocidade v da carga q. Como Lorentz ainda aceitava o 

ét~ de Maxwell (isto é, um meio em repouso absoluto em relação ao referencial das estrelas 

fixas, e através do qual a terra se move como se fosse transparente a ele, sem empurrá-lo 

ou arrastá-lo; ver (Pais, 1982, pág. 111) ), é natural que para ele esta velocidade fosse em 

relação a este éter, e não em relação a qualquer meio ou observador. Em suporte a isto 

temos as próprias palavras de Lorentz nesta mesma página 14: "Agora, de acordo com 

os princípios gerais da teoria de Ma.xwell, vamos considerar esta força como causada pelo 

estado do éter, e mesmo, como este meio penetra os elétrons [nome que Lorentz usava para 

as cargas elétricas em geral], como exercida pelo éter sobre todos os pontos internos destas 

partículas onde há uma carga." Uma prova conclusiva desta interpretação se encontra em 

outro trabalho de Lorentz: Lectures on Theoretical Ph,.ic• (Lorentz, 1927, Vol. 3, pág. 

306; ver também O'Rahilly, 1965, Vol. 2, pág. 566). Aí Lorentz afirma que se um fio com 

corrente elétrica (e portanto gerando B) e uma carga estão parados em relação ao éter, 

então não vai haver força magnética. Por outro lado se ambos esti~ transladando com 

a mesma velocidade v em relação ao éter (sendo que o observador e o laboratório também 

transladam com esta mesma velocidade v, já que dá como elrelllplo desta velocidade a 

velocidade da terra em relação ao éter), então afirma que vai haver uma força magnética. 

Ou seja, como na segunda parte deste exemplo não há velocidade relativa da ca:rga em 

relação ao fio, nem em relação ao laboratório, nem em relação ao observador, mas apenas 

em relação ao éter, e ainda assim há uma força magnética, se conclui que para ele aquela 

velocidade que aparece em (A3) é realmente a velocidade da carga q em relação ao éter. 

Por outro lado hoje em dia se usa a expressão (A3) com v sendo a velocidade da carga 

q em relação a um observador. A mudança ocorreu a partir do trabalho da relatividade 

restrita de Einstein de 1905 (Einstein, 1978). Neste trabalho, após obter as transformações 
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de coordenadas de Lorentz, Einstein as aplica para a força ( A3) e passa a usar a velocidade 

como sendo a velocidade em relação ao observador. Por exemplo, na página 71 coloca 

(entre colchetes são nOSS8S palavras) a diferença entre a antiga visão do eletromagnetismo 

e a visão baseada em sua teoria da relatividade: 

"1 - Se um pólo elétrico unitátio (q = 1], puntiforme, se move num campo 

eletromagnético, exercer-se-á sobre ele, além da força elétrica [FE = qÊ], uma "força 

eletromotriz" que, desprezando termos em que entram como fatores potências de vfc de 

grau igual ou superior a 2, é igual ao quociente pela velocidade da luz do produto vetorial 

formado com a velocidade do pólo unidade e com a força magnética (isto é, jj, tal que 

FM = qi1 X Bfc, Einstein usa aqui o sistema de unidades cgs-Gaussiano, Logo a força 

resultante é: F= qÊ + qi1 x B/c]. (Antigo enunciado) 

2 - Se um pólo elétrico puntiforme unidade se move num campo eletromagnético, 

exercer-se-á sobre ele uma força idêntica à força elétrica [F' = gC] que se obtem no ponto 

ocupado pelo pólo quando se submete o campo a uma transformação d~ coordenadas 

(O - 0'], a fim de o referir a um sistema de eixos (O'] que esteja imóvel em relação ao 

referido pólo (J' = O, logo qÊ + qi1 x B /c = qÊ', onde as variáveis. oom 1 .se referem 

aos campos no sistema de coordenadas O' que se move com i1 em relaçijo ~ O]. (Novo 

enunciado)" 

Aparentemente Lorentz passou a aceitar esta interpretação do significado de i1 em 

(A3). Vemos isto nas páginas 198, 199, 330 e 331 de seu livro The Theory of Electrom 

(Lorentz, 1915). Estas duas últimas páginas, em particular, apareceram apenas na segunda 

edição do livro, em 1915. 

É instrutivo ver esta mudança conceitual {mas não de forma) numa das leis mais 

utilizadas na física. 
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APÊNDICES 

Lagrangeana e Hamiltoniana de Weber 

Na mecânica clássica podemos descrever e resolver os problemas usando as equações 

de Newton. Equivalentemente podemos fazê-lo usando as chamadas equações de Lagrange 

ou as de Hamilton. Também se pode fazer o mesmo na eletrodinâmica de Weber, como 

ele o mostrou entre 1869 e 1871 (Weber, 1871 ). É este o assunto deste apêndice. 

Vamos tratar do movimento de duas cargas q1 e '12 de massas m, e m2, interagindo 

entre si de acordo com a lei de Weber, e sem a presença de forças externas (a generali2ação 

para N cargas é direta). Definimos duas funções Se T por: 

(Bl) 

(B2) 

Nestas equações v1 e v2 são as velocidades das cargas q1 e q2 em relação a um referencial 

inercial, v, = di'jfdt, v2 = di',./dt, e ru = lf', -i',. I, r12 = dr12/dt. 

Weber definiu sua Lagrsngeana na forma 

L= T- S. (B3) 

A força de Weber pode ser obtida da maneira usual da formulação Lagrsngeana a 

partir de S. Isto é, sendo i 1 = dz1 fdt, onde fi = z 1:i + 1/JY + z1z .é o raio vetor de q1 , 

temos que a componente z da força sobre q, é dada por 

F.• _ d IJS IJS _ q1q2 z, - z, (l rl2 rui'12) 
21-------- --+-=== 

dt IJi, /Jz1 411"eo r~2 2c2 c2 · 
(B4) 

Nesta equação r12 = dr12/ dt. 

Fazendo o mesmo com as outras componentes e com as variáveis da carga q2 obtem-se: 
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(B5) 

Já. a Hamiltoniana do sistema é definida por 

(B6) 

Nesta equação q~, com k indo de 1 a 6, representa as componentes das velocidades, 

Observando que Se T não dependem explicitamente do tempo"""'- que 8L/8t =O e 

8H/8t =O. Disto obtem-se que H é uma constante de movimento, dH/dt =O, que neste 

caso é a própria energia E do sistema. De (B1) a (B6) """'-então, após fazer as contas 

indicadas por (B6): 

E=H='.f+U, 

dE =O. 
dt 

(B7) 

(BS) 

Em (B7) U é a energia potencial de Weber que havia sido introduzida no capítulo 2 

e que é dada por 

. (B9) 

Queremos chamar a atenção que S é diferente de U já que ambas diferem no sinal em 

frente de rf2 • Embora a Lagrangeana seja dada. por L··= T- S, a Hamiltoniana. e a energia 

que se conservam são dadas por H = E = T + U, e não por T + S. AI,;o a.ná.logo ocorre 

na mecânica. e eletrodinâmica clá.ssica.s quando há potenciais generalizados que dependem 

não só da distância entre os corpos mas também de suas velocidades. 

As equações de movimento são as equações de Lagrange usual, ieio é 

d 8L 8L _O. 
dt 8q~ - 8qk - , k = 1' ... , 6 . (B10) 
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Nesta eqllliÇão qk representa cada uma das coordenadas"'" 1ft, z., "'•• 112 e Z2. Dai 

se obtem, após fazer as contas: 

(Bll) 

Obtem-se o análogo para m2. E isto é exatamente a segunda lei de Newton aplicada 

a uma força de Weber, CQD. 

Sugerimos que o leitor refaça as contas indicadas nesta seção para que se familiarize 

com esta técnica. 
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