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PREFACIO

“Grande progresso tem sido feito na ciéncia elétrica, principalmente na Alemanha,
pelos cultivadores da teoria de acio & distancia. As valiosas medigbes elétricas de W.
Weber sao interpretadas por ele de acordo com sua teoria, e a especulagio eletromagnética
que foi originada por Gauss, e continuada por Weber, Riemann, J. [F.} e C. Neumann, [L.]
Lorenz, etc., estd baseada na teoria de a¢éo & distancia, mas dependendo ou diretamente da
velocidade relative das particulas, ou da propagacao gradual de alguma coisa, seja potencial
ou forga, de uma particula a outra. O grande sucesso obtido por estes homens eminentes na
aplicagdo da matemética aos fenomenos elétricos, fornece, como ¢ natural, peso adicional as
suas especulagoes tedricas, de tal forma que aqueles que, como estudantes da eletricidade,
se voltam em dire¢io a eles como as maiores autoridades na eletricidade matemaética,

provavelmente assimilariam, junto com seus métodos matematicos, suas hipéteses fisicas.

Estas hipéteses fisicas, contudo, sdo completamente diferentes da maneira do olhar os
fendmenos que eu adoto, e um dos objetivos que tenho em vista é que alguns daqueles que
desejam estudar eletricidade podem, ao ler este tratado, ver que ha uma outra maneira de
tratar o assunto, que ndo é menos apta a explicar os fenémenos, e que, apesar de que em
algumas partes ela possa parecer menos definida, corresponde, como penso, mais fielmente

com nosso conhecimento atual, tanto naquilo que afirma quanto naquilo que deixa indeciso.

De um ponto de vista filoséfico, além disto, é extremamente importante que os dois
métodos sejam comparados, ambos os quais tiveram sucesso na explicacdo dos principais
fendmenos eletromagnéticos, e ambos os quais tentaram explicar a propagacio da luz como
um fenémeno eletromagnético e de fato calcularam sua velocidade, enquanto que ac mesmo
tempo as concepgoes fundamentais sobre o que de fato acontece, assim como a maioria das

concepgdes secundarias das quantidades envolvidas, sédo radicalmente diferentes.”
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Estas sdo as palavras de James Clerk Maxwell, no Preficio de sua obra maxima, 4
Treatise on FElectricily and Magnetism. Como se pode ver deste trecho, Maxwell via uma
diferen¢a conceitual entre suas concep¢des, derivadas em grande parte das de Faraday;
e as de Gauss e Weber, entre outros. Maxwell reconhece que ambas as formulagdes sio
compativeis com os principais fendmenos do eletromagnetismo, € que é extremamente
importante comparar os dois métodos.

E é justamente dentro deste espirito geral que se encontra o objetivo deste livro.
Nossa intengdo bdsica € apresentar de maneira razoavemente completa a Eletrodinimica
de Weber. Como Maxwell afirmou e mostrou mais de uma vez, a lei de Weber é compativel
com as equagdes de Maxwell (leis de Gauss, Ampére e Faraday), e s6 difere das concepg¢des
de Maxwell em aspectos filoséficos. Mostramos no decorrer do trabalho como se derivam
as equagbes de Maxwell a partir da forga de Weber.

A admiragio de Maxwell pelo trabalho de Weber também pode ser vista observando-
se que Maxwell dedicou todo o dltimeo capitulo de seu livro mais importante a apresentar
a eletrodindmica de Weber e a mostrar sua compatibilidade com os principais fatos
conhecidos do eletromagnetismo.

Este livro destina-se a estudantes dos viltimos dois anos de um curso de graduagéo em
fisica, engenharia ou matematica; ou ainda a estudantes destes cursos que estejam nos dois
primeiros anos da pds-graduacéo e que ainda nao tenham se familiarizado com o assunto.
Este trabalho visa a ser completo no sentido de que néo se requer nenhum conhecimento
prévio da lei de Weber para segui-lo. Para que o estudante possa acompanhar o curso
s30 necessarios como pré-requisitos na area de matemdtica que ele jd tenha cursado uma
disciplina de célculo diferencial e integral, e uma de anilise vetorial (incluindo os teoremas
de Gauss e de Stokes). Na area de fisica ji deve ter cursado mecénica e eletromagnetismo
ao nivel de ciclo bdsico, € que ji tenha cursado ou esteja cursando os cursos intermediarios
ao nivel de um Symon, Reitz e Milford, Lorrain e Corson, ou Panofsky e Phillips.

Este livro esta preparado para um curso de um semestre, e com este objetivo foram
incluidos exercicios ao final de cada capitulo. E fundamental que o estudante resolva
detalhadamente cada um destes exercicios j& que esta é uma parte integral e essencial do

Curso.



O assunto do livro se encaixa dentro da fisica cldssica, por este motivo néo tratamos
aqui da mecanica quintica ou da teoria da relatividade de Einstein. Um aprofundamento
em qualquer destes assuntos estd além dos objetivos deste trabalho.

Foi incluida uma bibliografia ampla no fim do livro para permitir um aprofundamento
maior aos estudantes mais interessados. Pode-se usar estas referéncias recentes como
sugestio de tSpicos de pesquisa ou de trabalho aos estudantes de pés-graduagio. No texto a
bibliografia é indicada pelo sobrenome do autor ¢ ano de publicagéo. Exemplo: (Edwards,
Kenyon e Lemon, 1976). As referéncias estdo completas (com ano, volume, pégina e titulo
do artigo) para incentivar os leitores a procurarem e estudarem os originais. Ganha-se
muita coisa com isto € muitas vezes os artigos originais sio facilmente encontrados em
bibliotecas universitarias com um bom acervo.,

Na medida do possivel acrescentamos informacgdes histdricas relevantes no corpo do
texto. O objetivo é dar o contexto histérico de algumas descobertas e fazer uma anélise
critica de alguns t6picos. A fonte para a maior parte destas informagoes foram os artigos
originais e os excelentes livros de Whittaker (A History of the Theories of Acther and
Electricity), O'Rahilly ( Electromagnetic Theory- A Critical Examination of Fundamentals)
e Mach ( The Principles of Physical Optics - An Historical and Philosophical Treatment).
Sugerimos fortemente um estudo atento destes trés livros a todos que queiram aprofundar
de maneira consciente e critica os seus conceitos nesta area fundamental da ciéncia.

Em todo o livro usamos o Sistema Internacional de Unidades. Quando definimos

alguma grandeza usamos “=" como simbolo de defini¢do.

Agradecimentos: Aos alunos da graduagio e dﬁ‘ pos-graduacio que seguiram este
curso, pelas criticas construtivas que apresentaram nas vezes em que este curso foi
ministrado. Ao Centro Académico da Fisica da UNICAMP por ter me convidado a
ministrar este curso durante o “I Curso de Inverno” (1990). Ao Instituto Nacional de
Pesquisas Espaciais (INPE) de Sio José dos Campos, por ter me convidado a ministrar
este curso no INPE em 1991. Aos Drs. Peter e Neal Graneau, James Paul Wesley,
Thomas E. Phipps Jr., P. T. Pappas, Domina E. Spencer, Gerald Pellegrini, Cynthia K.
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Whitney, Ralph Sa.nsbur}, Julian B. Barbeur, Harvey R. Brown, C. Roy Keys, Svetlana
Tolchelnikova-Murri, Reginald I. Gray, Umberto Bartocci, Roberto Monti, Roberto de
A. Martins, Cesar Lattes, Roberto Clemente, Marcio J. Menon, Waldyr A. Rodrigues
Jr., Wilson de C. Fe_rféira, Adolfo Maia Jr., Erasmo Recami, Edmundo C. de Oliveira,
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Villela, Hector R. T. Silva, Ruy H. do A. Farias, Marcos C. D. Neves, Werner M. Vieira,
Paulo Magno Garcia, Durval C. Jacinto, e a todos agueles que leram uma primeira versao
deste livro ¢ que me ajudaram com suas idéias e sugestdes. Aos estudantes que estao
desenvolvendo pesquisas nesta area, e especialmente a: Dario S. Thober, Marcelo de A.
Bueno, Jodo José Caluzi, Fabio M. Peixoto, e Luis A. C. Henriques.
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¢ ao Center for Electromagnetics Research, Northeastern University (EUA), que me
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1) Reviséo do Eletromagnetismo Cldssico

1.1 - Introducao

O estudo da natureza e das leis que a regem sao alguns dos objetivos principais dos
cientistas. Os fisicos, em particular, se dedicam a pesquisar os fendmenos mecénicos,
gravitacionais, elétricos, magnéticos, dpticos, nucleares, etc. Neste capitulo vamos nos
concentrar no estudo do eletromagnetismo clédssico.

Este é o nome que se dd & ciéncia que trata de uma maneira unificada das interacdes
entre cargas elétricas, imils, correntes elétricas e da radiacio eletromagnética (luz visivel,
raios X, ondas de réddio, etc.) Embora desde os gregos ja se conhecessem alguns fenémenos
elétricos (Tales de Mileto, ~ 600 a. C., observou que quando se atritava o &mbar este atraia
pequenos objetos) e magnéticos (os gregos sabiam que a magnetita, um tipo de pedra,
atraia pedacos de ferro), o conhecimento e desenvolvimento mais amplo desta ciéncia 56
passou a ocorrer a partir de aproximadamente 1600. E neste ano que William Gilbert (1540
- 1603) publica o importante livro de Magnete, que trata do magnetismo e da eletricidade.
E nele que Gilbert apresenta sua grande descoberta de que & prf:pria terra ¢ um ima
permanente, e assim explica a razfio das agulhas magnéticas apontarem numa mesma
direcéo. E a ele também que se deve a distingdo clara entre atracao elétrica e magnética.
‘Também a dptica passa por um grande desenvolvimento a partir desta época. Embora
os gregos j4 conhecessem a lei de reflexdo (angulo de incidéncia igual ao de reflexéo) e o
fendmeno da refragéo, a lei que rege este dltimo fenémeno s6 foi descoberta por Snell {1591
- 1626) por volta de 1621. A primeira publicacio desta ‘lei ocorre em 1637 no apéndice A
Didptrica, do famoso e agradavel livro Discurso Sobre o Método, de René Descartes (1596
- 1650).

A partir dal estes ramos foram se desenvolvendo mais ou menos independentemente.
A descoberta da existéncia de dois tipos de eletricidade (positiva e negativa, como dizemos
hoje em dia) é devida a du Fay (1698 - 1739) em 1733-4. O principio de conservacio
de cargas elétricas € devido a Benjamin Franklin (1706 - 1790) em seus experimentos de
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1747. A lei do inverso do quadrado da distancia para as forgas eletrostéticas foi sugerida
entre outros por Priestley (1733 - 1804), em 1767, e estabelecida experimentalmente por
Coulomb (1736 - 1806), em 1785. A mesma lei relativa a polos magnéticos foi sugerida
entre outros por Michell (1724 - 1793), em 1750, e estabelecida experimentalmente por
Coulomb, em 1785, Um importante predecessor de Coulomb,no que se refere a atragio
entre pdlos magnéticos foi o fisico experimental aleméo Aepinus. Em 1759 ele publicou um
importante livro que influenciou a Coulomb, onde desenvolve a idéia de agio a distincia
entre os pélos magnéticos, idéia que acabou suplantando o conceito de circulagdo de um
fluido magnético que havia sido sustentado por Descartes, entre outros. O livro de Aepinus,
publicado originalmente em latim, foi traduzido a pouco tempo para o inglés (Aepinus,
1979).

Isaac Newton (1642 - 1727) descobre a decomposicao da luz branca nas cores do
espectro (arco-iris) em 1666. Ele foi também o primeiro a medir a periodicidade da luz,
isto é, aquilo que hoje em dia chamamos de comprimento de onda, embora para ele a
luz fosse um fluxo de particulas (teoria balistica) e ndo uma perturbagéo ondulatoria em
um meio {éter). Também se deve a Newton a primeira interpretagao correta do fenémeno
da polarizagdo da luz, em 1717. Publicou seu segundo grande livro‘(o primeiro sendo
Principios Matemdticos de Filosofia Natural, de 1687), Optica, em 1704 (ver Newton, 1952
a, b). A descoberta de que a luz se propaga no tempo (e néo instantaneamente), € o
primeiro valor da velocidade da luz séo devidas a Roemer (1644 - 1710), em 1675.

A interconex@o entre os fendmenos elétricos e magnéticos, embora pressentida por
muitos, s6 foi descoberta por Persted (1777 - 1851) em 1820. Em seguida a isto surgem
os grandes trabalhos de Ampére (1775 - 1836), no periodo 1820 - 1826, e Faraday (1791 -
1867), a partir de 1831. A interconexdo dos fenémenbs elétricos e magnéticos com a luz,
embora também pressentida por muitos, 88 ocorre formalmente pela primeira vez com os
trabalhos de Maxwell (1831 - 1879), no periodo 1860 - 1864. A confirmagio experimental
das predigbes tedricas de Maxwell veio com Hertz (1857 - 1894}, no periodo 1885 - 1889,

Estes trabalhos formam a base do eletromagnetismo cldssico. Revisaremos este
assunto neste capitulo. Como hd milhares de livros que tratam desta drea, em todos

os niveis, faremos apenas uma curta revisio de alguns tépicos, especialmente daqueles
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que serdo relevantes na discusséo da teoria de Weber. Devido 8o objetivo deste livro
deixaremos de. tratar de muitos assuntos importantes do eletromagnetismo moderno, mas
o leltm‘ certamente encontrard muitos livros especializados tratando destas dreas, Nosso
objetivo ao escrever este capitulo é dar um pano de fundo para a introducio da teoria de
Weber. Com isto mais para frente poderemos fazer uma comparagéio mais detalhada entre

a eletrodinimica de Weber e o eletromagrnetismo classico.
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1.2 - Equacoes de Movimento

Depois deste pequeno resumo histdérico podemos voltar ao assunto principal deste
capitulo que é uma apresentagéo do eletromagnetismo classico. Em linhas gerais pode-se
dizer que este é constituido de quatro partes principais, independentes uma da outra, mas

todas necessdrias para uma formulacio completa da teoria. Séo elas:

(A) Equacao de movimento,

(B) Forga de Lorentz,

(C) Equagdes de Maxwell,

(D) Equacgdes ou relagdes constitutivas do meio.

As equagdes ou relagdes constitutivas do meio sao descrigdes empiricas das
propriedades dos materiais. Como tais elas nfo dependem de com qual teoria se estd
trabalhando e valem do mesmo jeito em todas as formulacdes tedricas. Exemplos: Lei de
Ohm (V = RI ou J = crE), D= eE, B = pH, etc. Nestas relagdes R, o, ¢, e p sio
propriedades caracteristicas de cada meio, sendo medidas empiricamente. Daqui para a
frente nos concentraremos apenas nos aspectos (A), (B) e (C).

Um dos problemas mais tipicos da fisica é descrever 0 movimento de corpos materiais
sob a acao de forgas. A forma usual mais tradicional de tratar deste problema € usando os
trés famosos axiomas ou leis de movimento de Newton. Estas leis sdo aqui apresentadas
na forma como Newton formulou-as originalmente em 1687 (Newton, 1952 a) nolivro
Principios Matemdticos de Filosofia Naturel Este livro, mais conhecido pelo primeiro
nome Principia, escrito originalmente em latim, é por muitos considerado como a maior

obra da ciéncia de todos os tempos. Suas leis:

I% Lei: Todo corpo continua em seu estado de repouso, ou de movimento uniforme
em uma linha reta, a néo ser que seja forcado a mudar este estado por forgas impressas

sobre ele. (1.1)

II¢ Lei: A mudang¢a de movimento é proporcional a for¢a motriz impressa; e é feita

na dire¢io da linha reta na qual esta forca é impressa. (1.2)
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ITI¢ Lei: A toda acéo ha sempre oposta uma reacéo igual. Qu, as a¢ées miituas de

dois corpos um sobre o outro séo sempre iguais, e direcionadas as partes contrarias. (1.3)
Em linguagem vetorial moderna estas trés leis poderiam ser reescritas como segue:

I2 Lei: Se Fr = 0 entiio o corpo fica parado ou em movimento retilineo uniforme. (1_;3 Ji)

(1.4)
112 Lei: Fp = &(m?). | (1.5)
II® Lei: Fap=~Fna - (1.6)

Em (1.4) e (1.5), Fr é a forea resultante agindo sobre o corpo de massa m, e .1';' éa
velocidade deste corpo. Em todo este trabalho ﬁ,—; significaré a for¢a que o corpo j exerce
sobre o t (isto é, a for¢a em ¢ devido a 7). Logo em (1.6) Fap & a forca que A exerce em
B, e o oposto para Fga.

Caso a massa seja constante, a segunda lei de Newton fica na forma

Fpr=ma&, __ , (1.7)

onde d é a aceleracdo &o corpo de massa m. Neste livro nos concentraremos neste 1ltimo
caso e néo trataremos de alguns problemas de variagéo de massa tipicos da mecénica (como
o do caminh&o que vai perdendo areia, ou o do foguete que vai expelindo gases e vartando
sua massa).

Antes de prosseguir vale & pena comentar que a aceleragio que aparece em (1.7) é a
aceleraciio do corpo em relacio ao espago absoluto, conforme formulado por Newton. Pode-
se também dizer que esta é a aceleracio do corpo em relacio a um referencial inercial. Nao
discutiremos estas nogdes de espago absoluto ou referencial inercial. Embora a terra néo
seja um referencial inercial (sabe-se isto por ela girar em relagio ao referencial das “estrelas
fixas,” por ter uma forma achatada nos polos, e por experiéncias como as do péndulo de
Fouca.ult), pode-se na maior parte dos casos consideri-la como tal. Em termos préiticos
isto significa que em geral pode-se usar as leis de Newton no referencial do laboratério

(08 efeitos da nao inercialidade da terra sio muitas vezes pequenos comparados com o
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que se esté observando). Isto é vilido na maioria das situagdes nas qums os movimentos
8o restritos a uma pequena érea na superficie da terrn, e tém uma duracio pequena
comparada com 24 horas. Neste sentido um observador com velocidade constante (em
médulo e sentido) em relagdo & terra também pode ser considerado como sendo inercial.
Caso ele esteja acelerado isto deixa de ser valido.

H3 duas formas da terceira lei de Newton: acéo e reagfio forte (quando a forca estd
zo longo da reta que une os dois corpos) e fraca (quando a for¢a tem pelo menos uma das

componentes que ndo estd ao longo da reta que une os dois corpos), ver Figura 1.1.

A B - »
A) Fon  F agédo e reagdo forte
A B - .
B) Fon P acao e reacdo forte
A 8 . -
C) / & acdo e reagao fraca
Faa AB
A B . -
D) | : acdo e reagdo fraca
- Fpa Fap
E A B %0 hi = .
) Fal : ndo ha acho e reagdo
Fa Fap=0
F) 4 g nao ha acio e reaciio
FBA Fup
Figura 1.1

Nesta figura mostramos dois exemplos onde vale a terceira lei de Newton na forma
forte, dois na forma fraca, e dois exemplos ficticios onde a terceira lei de Newton néo é
satisfeita. | |

Para resolver um problema qualquer na fisica em geral usamos (1.7). Para isto
precisanios de relagﬁeé ﬁrecisas para a for¢a, e estas relagbes vao depender do tipo dé

interagdo a que o corpo esta sujeito. A seguir vao alguns exemplos,
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1) Forca Gravitacional (também proposta por Newton em 1687):

F;

Fi= —Gmim; =% , (1.8)

r'j

onde

GER-fi= (i) + (i -y + (5 - %),

rig = (@i = 2% + (i — u;)* + (2 — )22, - 9)

eonde G é a constante universal da gravitagio (G = 6.67 x 10~1"Nm?/kg?). Em (1.8) #;;
¢ o vetor unitario que aponta do corpo j para o {, r;; é a distancia entre eles, e 7; () é 0
vetor que aponta da origem do sistema de coordenadas até o corpo ¢ (j).

Um caso iipioo da forga gravitacional é o de um corpo interagindo com a terra (forga

peso = P). Esta forga é representada por

P=mg, C o (1.10)

onde § é o campo gravitacional da terra. Caso o corpo esteja proximo da superficie terrestre

vem que ¢ = |9l = GMq;/R"}- ~ 9.8 ms™2, onde My é a massa da terra e Ry seu raio.
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H) Forga Elastica:

Neste caso temos:

F=—kz, (1.11)

onde k é a constante eldstica da mola (k > 0), ¢ z é a distancia do corpo & posi¢ho de
equilibrio.

k m
t } - X
o X
Figura 1.3
III) Forga de Atrito Dinamico:
F=-b7, (1.12)

onde b é o coeficiente de atrito (b > 0) entre o corpo e o meio (ar ou dgua, por exemplo), e &
é a velocidade do corpo em relagéio a este meio. Em ge;'al a for¢a de atrito dindmica em um
fluido é melhor representada por F = —b;v?$, onde b é uma constante positiva e § = 7/|7].
Contudo a expressio linear (1.12) é muito mais ficil de ser tratada matematicamente e
funciona razoavelmente bem com uma escotha razoavel de b.

Estas sfio as for¢as mais comuns que se encontram na mecanica. Na préxima segio
veremos as forgas que aparecem no eletromagnetismo. Juntando estas expressoes de forga

com (1.7) podemos descrever o movimento dos corpos submetidos as interagdes usuais.
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A formulacio que apresentamos aqui é a visdo classica Newtoniana. Ha outras
formulagGes para descrever o movimento dos corpos no espago, como as teorias da
relatividade restrita e geral de Einstein. Neste livro ndo discutiremos estas outras

formulacoes j& que isto estaria além dos objetivos deste trabalho.
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1.3 - Forga de Lorentz

Nesta segiio discutiremos as forgas que aparecem no elétromagnetismo.

I) Forga de Coulomb:
Esta é a for¢a eletrostitica, obtida por Coulomb em 1785, e que descreve a forga
exercida pela carga elétrica ¢; em ¢;, quando ambas estio em repouso em relacio ao

laboratoério:

= Gigj Tij
F,=22113 1.
"* 4re, r?j (1.13)

onde f;; € r;; foram definidos em (1.9), ver figura 1.2, e ¢, é uma constante chamada de
permissividade do véacuo (g, = 8.85 x 107 12C?N~1m~2),
Caso hajam N cargas em repouso interagindo com uma certa carga ¢, vem de (1.13)

e do principio de superposigio de forcas que a forga resultante atuando em g, é dada por

F=gE, ' (1.14)
onde
N G Foi
E(,) = = A 1.
ORI (115)

Em (1.15) E é conhecido como o campo elétrico obtido da lei de Coulomb.

" Esta for¢a também pode ser obtida dos potéﬁcia.is. Lagrange (1736 - 1813) havia
introduzido a fung¢io potencial escalar na gravitagiio em 1777. Em 1782 Laplace (1749 -
1827) obteve a equacéo satisfeita por este potencial no espago livre, resultado publicado em
1785. Em 1811 Poisson (1781 - 1840} introduziu o potencial escalar no eletromagnetismo e
ainda obteve um resultado mais geral que o de Laplace ao obter (1813) a equagio satisfeita
pelo potencial em regiSes onde hd matéria e cargas livres (Poisson, 1811 e 1813). No caso

do eletromagnetismo o potencial de Poisson é dado por:
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.y g; 1
(i) = —_— 1.16
( 0) =1 411'50 roj ( )

Em (1.16) ¢ € conhecido como o potencial escalar elétrico no ponto 7, devido as cargas g;.

Aplicando o gradiente em ¢ atuando no ponto 7,, V,#, podemos obter o campo elétrico

de (1.15):

(1.17)

E=-V,¢. (1.18)

A prova deste fato é para ser obtida no exercicio 1.1. Q simbolo V é conhecido como delou
nabla, e é um operador vetorial. Quando atua numa grandeza escalar é conhecido como o
gradiente desta fungdo, e da como resultado uma grandeza vetorial. Em geral o potencial
vai variar de ponto para ponto no espago. A grandeza V¢ é um vetor que aponta, em cada
ponto do espago, na diregio de maior crescimento de ¢. Cargas positivas deixﬁcfas livres
numa regido de potencial varidvel vdo do maior para o menor potencial {isto ¢, na mesma

direcio em que E aponta) e as cargas negativas movem-se em sentido contrario.

- IT) Forga magnética em uma carga (no Apéndice A se encontra uma discusséo

sobre as origens histéricas e os significados da expresséo abaixo):

F=g¢t,xB. (1.19)

=

Nesta expressio B é o campo magnético na pos.i'g'a?.o onde se encontra a carga g,,
campo este gerado por imés ou por correntes elétricas. Ja ¥, é a velocidade da carga ¢,
em relagio a um observador ou sistema de referéncia. Quando aplicamos esta forca
juntamente com a segunda lei de Newton na forma (1.7) entéo o observador ou sistema de
referéncia tém de ser inerciais. Este é um dado muito importante e que é pouco enfatizado
nos livros didéticos usuais. Ali4s a maioria dos livros quando apresenta esta equagdo diz

apenas o seguinte: “Seja uma carga ¢ com velocidade ¥ num campo magnético B, entio
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a forca magnética nesta carga € dada por ¢¥ x B”. Ou seja, em geral néo se especifica
qﬁe velocidade é esta que aparece em (1.19). Mas obviamente velocidade é uma grandeza
relativa, sendo uma relagio entre a carga e um certo corpo em relagido ao qual ela se
move. Por isto é que para uma mesma carga podem existir varias velocidades diferentes
simultaneamente {por exemplo, ela pode estar a0 mesmo tempo parada em relagéo a terra,
se aproximando de uma outra carga, se afastando com uma velocidade maior de um certo
fma, etc.) Infelizmente os livros didéticos usuais quando apresentam a relagéo (1.19) ndo
especificam velocidade da carga em relagio a qué (ou seja, ndo especificam claramente
em relagéo a que corpo, dbjeto ou sistema é para ser entendida a velocidade ¥, da carga
go)- Diante desta indefini¢do o estudante em geral fica confuso entre varias possibilidades:
velocidade da carga em relagéo ao imé ou fio com corrente que geram B; em relagiio & terra
ou laboratdrio; em relagéio a um referencial (observador) inercial qualquer; em relagio ao
campo magnético; em relagio a velocidade média das cargas microscopicas (elétrons) que
geram B, etc. Apenas quando se entra em tépicos da relatividade restrita nestes livros
é que se percebe o significado (para o eletrornagnetismo classico que estamos analisando
nesta se¢io) da velocidade que aparece em (1.19), isto é, velocidade em relagdo a um
observador ou sistema de referéncia (e ndo, por exemplo, em relagio ao imi ou campo
magnético). Exemplos desta situacéo inicial vaga na defini¢do da velocidade ¥, podem ser
vistas em varios livros: (Tipler, 1984, Vol. 2a, pag. 731), (Halliday-Resnick, 1984, 42 ed.,
Vol. 3, pég. 164), (Sears, 1967, Vol. II, pég. 264), (Feynman, Leighton e Sands, 1977,
pégs. 1-2 e 13-1), (Jackson, 1975, pags. 2 e 238), (Symon, 1971, pdg. 140), (Panofsky e
Phillips, 1964, pag. 182), (Purcell, 1965, pag. 150), (Reitz e Milford, 1967, pig. 148), ete.
O fato de a velocidade que aparece em (1.19) ser em relagio a um referencial, e portanto
variar de observador para observador, é 0 que gera muitas das caracteristicas tipicas do

eletromagnetismo classico que discutiremos mais para frente.

Ainda sobre esta expresséo vale lembrar que a forca esta dada por um produto vetorial
entre a velocidade da carga e o campo magnético no ponto onde se encontra a carga,
produto este definido pela regra da mao direita. utilizada usualmente na andlise vetorial.
Ainda: |F| = |g,v,B sin 6], onde 8 é o angulo entre 7, ¢ B. .

J4 demos em (1.15) e (1.16) os valores para o campo elétrico Coulombianc e para o
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potencial escalar elétrico. Apresehtamos agora o valor do campo magnético gerado por
uma corrente usual em fios metalicos, dado pela lei de Biot (1774 - 1862) e Savart (1791 -

1841), de 1820 (no capitulo trés discutiremos mais esta expressao):

)=t f; Idl; x foi (1.20)
i

rgj )
Nesta expressio u, é chamada de permeabilidade do vacuo (u, = 47 X 10~ TkgmC~?), e

I,-di} ¢ um elemento de corrente do circuito C;. O campo é entdo obtido integrando-se

sobre todo o circuito fechado C;.

ITT) Forga elétrica geral: |

Em 1729 Gray havia descoberto a condugao elétrica, isto é, passagem de corré_nte
elétrica por metais, com isto descarregando a carga que havia sido gerada por atrito.
Na Ilingua.gem de hoje em dia diriamos que Gray descobriu a corrente elétrica gerada
pela descarga de cargas eletrostaticas. Isto permitiu a classificacdo dos materiais entré
isolantes e condutores. Em 1780 Galvani descobriu a corrente elétrica gerada quimicamente
(no caso dele corrente em nervos de animais} e isto permitiu que em 1792 Volta (1745 -
1827) estivesse iniciando a construgdo das primeiras pilhas (baterias quimicas). Este foi
o inicio de estudo das correntes elétricas (antes disso sé se pesquisava a eletrostitica e a
magnetostatica, estudo dos imés naturais).

Em 1826 Ohm (1787 - 1854) descobriu a lei que leva seu nome: Se uma pitha ou
bateria quimica gera uma voltagem V entre seus terminais ent3o a corrente elétrica I que
val circular no circuito ligado aos terminais desta pilha vai depender da resisténcia R do

fio de acordo com a relacdo:

I==. | (1.21)

Em 1831 Faraday (1791 - 1867) descobriu que uma corrente é gerada ndo apenas
por uma bateria mas também quando se variava o fluxo magnético sobre o circuito (por
exemplo, aproximando ou afastando um imé deste circuito, ou variando a intensidade de

corrente de um circuito secundério, que gera B de acordo com (1.20)). A lei de indugéo de
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Faraday pode ser expressa como (no caso em que o circuito nio estd ligado a uma bateria):

fem o :
I= X _ (1.22)
onde
fem =—23 (1.23)
em = prat .

@Msfsjﬁ.da. - .t;._24)

Em (1.23), fem é conhecido como “for¢a eletromotriz induzida,” e embora tenha o
nome de for¢a é na realidade uma voltagem de origem n#o eletrostitica cuja unidade é o |
volt (1V = lkg m*C~'s~?). J4 introduzimos em (1.23) o sinal de menos devido & regra
de Lenz (1834) que afirma que quando se varia o fluxo sobre o circuito a corrente induzida.
éem direcdo .tal que a forga resultante sobre o circuito tende a se opor & variagao do fluxo.
Em (1.24) &n é o fluxo magnético sobre o circuito primério, onde estd sendo induzida &

corrente, devido ao campo magnético gerado no circuito secundario.
| Em 1845 Franz Neumann (1798 - 1895) introduziu pela pnmelra. véz 0 potenc:a.l vetor
magnético A (Neuma.nn, 1845 e 1848 a, b). Este é dado por '
- di; '
A, = ;‘—; ) I,:; : - (1.25)

O campo magnético no ponto 7, pode ser obtido aplicando o rotacional em A:

BF,)=V,xA. (1.26)

O operador Vx é conhecido como rotacional, e ao atuar num campo vetorial gera um

novo campo vetorial. Em termos das coordenadas Cartesianas vem:

2 3A;_6A, N %_BA; A aA, 3A,,. .
_z(ay" 6"'0)-'- y(azo 6.':,,) + z(az., B ay,) : (1.27)



A descoberta de Neumann foi perceber que a lei de Faraday podia ser expressa apenas
em fungdo do potencial vetor magnético que criou, sem necessitar falar de fluxo magnético,

isto € (no capitulo 4 descreveremos em maiores detalhes a lei de Faraday e o papel de A):

Py = f Adl, (1.28)
C

d DA\
fem = — @ = i(-—ﬁ).dl . (1.29)

No caso estatico vem de (1.15) a (1.18) que existe a operacio inversa, isto é, dado o
cempo elétrico de Coulomb pode-se obter a diferenca de potencial (voltagem) entre dois

pontos A e B dada por:

B
V = ¢(7a) — ¢(Fs) = /A Bl - (1.30)

Comparando (1.29) com (1.30) vé-se que —dA/dt tem o mesmo papel que um campo
elétrico usual jd que ambos geram uma voltagem, voltagem esta que pode ocasionar uma
corrente.

A pé.rtir do trabalho de Neumann a teoria de circuitos foi genera.liia.da para incluir os
efeitos de auto-induténcia. Os principais trabalhos nesta diregéio foram feitos por Kirchhoff
(1824 - 1887) no periodo 1848 - 57 (Kirchhoff, 1850, 1857 a, b; Rosenfeld, 1973); W.
Thomson (1824 - 1907), também conhecido como Lord K‘elvin, juntamente com Stokes
no periodo 1853 - 4; ¢ Heaviside (1850 - 1925), em 1876. Kirchhoff j& em 1857;-.esérevia
a lei de Ohm de maneira geral, da forma como a conhecemos hoje em dia, incluindo as
influéncias dos potenciais escalar elétrico e vetor magnético, isto é (Kirchhoff, 1957 a),
J= —~o(V¢+ 8A[Bt), onde J ¢ a densidade de corrente. Se formos escrever esta equagio
em termos de um campo elétrico generalizado vem:

E(f) = -V.é - %‘4 : (1.31)
Pode-se pensar que esta é uma combinagio de (1.18), (1.30) e (1.29). A forga elétrica geral
é entdo dada por F = g,E, com E dado por {1.31).
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IV) Forca de Lorentz:
No eletromagnetismo clissico a expressio geral para a forga eletromagnética sobre uma
carga € conhecida como for¢a de Lorentz. Ela engloba as influéncias elétricas e magnéticas

€ 8¢ escreve como

F=gqE+¢0,x8, (1.32)

onde o campo elétrico E é dado por (1.31) e o campo magnético B por (1.26). Juntando-
se esta expressdo com a segunda lei de Newton, (1.7), pode-se em principio descrever
o movimento de uma carga interagindo com campos elétricos e magnéticos quaisquer.
Novamente a velocidade #, que aparece em {1.32) é a velocidade da carga q, em relacio a
um referencial ou observador. Qu seja, néo é a velocidade em relagdo ao campo magnético,
e nem em rela¢io ao ima ou fio que geram B.

A expressio (1.32) surgiu pela primeira vez em dois trabalhos fundamentais de H.
A. Lorentz (1853 - 1928}, fisico tedrico holandés, publicados em 1892 e 1895 (Lorentz,
1892 e 1895). Nestes trabalhos Lorentz deu uma estrutura granular microscopica para
a formulacio do eletromagnetismo de Maxwell, que era todo baseado no continuo. Isto
é, Lorentz passou a descrever as fontes dos campos como sendo entidades corpusculares
discretas, cargas e elementos de corrente.

Vamos agora fazer uma primeira anilise da for¢a de Lorentz (uma discuss'éo mais
aprofundada é apresentada no capitulo ). Em primeiro lugar observamos que o potencial
escalar elétrico, € o campo elétrico de Coulomb, (1.16) e (1.18), dependem apenas das
disténcias entre as cargas interagentes, mas nio de suas velocidades. J4 o campo magnético
B de (1.20) depende além disto da corrente elétrica. Como corrente é carga em movimento
vem que B depende da velocidade das cargas fontes (isto é, cargas que geram os campos) e
das distancias entre as cargas interagentes. Ja o potencial vetor magnético estd diretamente
ligado com B por (1.26) e entdo também depende da velocidade das cargas fontes e das
distincias entre as cargas interagentes. '

Vemos entio que hd trés componentes na forga de Lorentz (1.32): (I) A forga
Coulombiana —¢,V ,¢, que depende apenas das posigdes relativas entre cargas em repouso.

(II) A forca magnética, g,7, X B, que depende da velocidade ¥, da carga de teste (isto é,
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da carga que sente a forca) e da velocidade das cargas fontes (isto €, das cargas que geram
B), pois B é diretamente proporcional & corrente elétrica e esta é diretamente proporcional
. i:elo_cida.de. (111) A forca de indugéo, —q,0A4/8t, que tem uma componente dependente
de aceleragio das cargas fontes (;1. ligado com B, que ¢ proporcional & velocidade, e nesta
componente da forqa aparece JA/8t), mas que nio depende nem da velocidade nem da
aceleracio da carga de teste. A outra componente da forca de indugio depende apenas da
velocidade das cargas que geram B. Isto pode ser visto lembrando que a indugdo ocorre
néo apenas quando a intensidade da corrente muda (caso acima, aceleragao diferente de
zero), mas também quando a intensidade da corrente é constante (@ = 0) e o fluxo de B
sobre o outro circuito muda no tempo, como quando um ima se aproxima ou se afasta do
circuito primério. Neste segundo caso para haver inducio é necessério ter B e isto mostra
que esta componente vai depender da velocidade.

 No capftufo 5 faremos uma comparagdo da. forga de Lorentz com a forga de Weber.
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1.4 - Equagoes de Maxwell

Para resolver nosso problema inicial, que é o de descrever o movimento de cargas no
espaco em relacio uma as outras, o primeiro passo ji estd dado. Isto é, temos a equacgéo
de movimento (1.7) e a for¢a eletromagnética correspondente, (1.32). Logo, se estamos
num sistema de coordenadas inercial e uma partéula (ponto material) de carga ¢ e massa
m se move com velocidade ¥ e aceleracio @ em relagao a este referencial inercial, numa
regiao onde hé um campo elétrico £ € um campo magnético B, vem que seu movimento ¢

descrito pela equagéo

¢B+gixB=mad. (1.33)

Obviamente os campos F e B que aparecem nesta equagiio nio sio aqueles gerados
pela prépria carga g, mas sim gerados por cutras cargas e distribui¢des de correntes, que
sio chamados de fontes de E ¢ B. Para resolver o problema completo de forma auto-
consistente (isto é, descrever o movimento de um conjunto de cargas interagindo entre
si sem a presenga de campos eletromagnéticos externos) precisamos sa.ber como as fontes
geram os campos. Qu seja, dado uma distribuigdo de cargas e de correntes obter 0s campos
EeB gerados por este sistema. E é exatamente esta a fungéo das equagdes de Maxwell.

Seja entio p uma densidade de carga (as unidades de p sio Cm ™3, isto &, Coulombs por
metro ciibico), ¢ J uma densidade de corrente (suas unidades sendo Am=2 = Cs~1m~?
isto é, Ampéres por metro quadrado). A quantidade de carga interna a um volume V ea

quantidade de corrente que atravessa uma superficie S sdo dadas respectivamente pbr

Q:/V/]pdv-, (1.34)
I=/S/f.da’. | (1.35)

Nestas expressdes dV € um elemento de volume e dd é um elemento de drea vetorial,
sendo sempre perpendicular & superficie S em cada ponto. Por convencio vem que se

S for uma superficie fechada, dd apontara para fora e a integral dupla sobre toda a
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superficie é representada por §.  Em (1.35) I é obtido por um produto escalar entre
J e dd, produto este definido pelas regras usuais da analise vetorial. Vale lembrar que p,
Q e I sdo grandezas escalares € que J é uma grandeza vetorial. Por convencio vem que J
aponta em direcio contriria ao movimento das cargas negativas (usualmente elétrons). Se
numa regitio do espaco temos cargas positivas € negativas em movimento, com velocidades

U4 e ¥, respectivamente, entéo temos:

T =pi¥4 +p0- . (1.36)

Nesta equagiio p4 (p-) € a densidade de cargas positivas (negativas), que se move com
velocidade ¢} (v_). Muitas vezes temos apenas correntes macroscopicamente neutras
{como no caso da corrente em um fio metalico comum ou em um plasma gasoso) tal que
p— = —p4. Nestes casos J = p; (4 — 9..). No caso de correntes usuais em condutores
metalicos apenas os elétrons se movem e entéo J = p-v- = -p+t7.; . Nas equagoes de
Maxwell p e J siio as fontes basicas que geram E e B, e entdo achamos necessério fazer
este preambulo para esclarecer o que sdo cada uma destas fontes,

As equacgbes de Maxwell sdo usualmente apresentadas de duas maneiras: forma
diferencial e forma integral. Antes de apresentd-las temos de fé.lar um pouco mais da
notagio vetorial e de seu significado. J& introduzimos o gradiente de uma fungéo escalar,
(1.17), e o rotacional de uma fungéo vetorial, (1.26) € (1.27). Vai aqui o divergente de uma

funcéo vetorial, que da como resultado uma fungao escalar:
G = 3G, + §Gy + 3G, , (1.37)
G, 0G, + oG, ‘

Oz + dy Oz
Vamos indicar o significado fisico € geométrico de Vi por algumas figuras: -

H=v.G=

(1.38)
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Figura 1.4

No caso do divergente e do rotacional é mais ficil ver o significado observando os
seguintes teoremas, validos para um campo vetorial G = é(z,y,z) arbitririo, desde que
razoavelmente bem comportado:

f f ] (V.G)V = ﬁ Gudi=dg. o .(1.39)
J |

L / (V x c":‘).da' = ﬁ Gdi=Ce. . | (1.40)

O primeiro é conhecido como teorema de Gauss ou teorema da divergéncia. Como ja foi
afirmado anteriormente, o simbolo {f indica que estamos integrando sobre toda & supérfn'cie
fechada que engloba V. O simbolo ®g usualmente indica o fluxo da grtm.dez& G através
de uma certa superficie 5. Do teorema de Gauss vemos entdo que o divergente de uma
grandeza esté estreitamente ligado com a quantidade desta grandeza que atravessa uma
certa superficie S, isto é, com seu fluxo. Vio a seguir figuras de grandezas vetoriais radiais

e tangenciais mostrando onde o fluxo é ou néo nulo.
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F 3 \ — B
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G radial G tangencial
G = K#/r? G=Kplp
Figura 1.5
(superficies fechadas)

Esta.ndo as superficies 1, 2, 3 e 4 representadas na figura vem: &; > 0, &, = &; =
d; = 0._ No caso da superficie fechada 1, G ests sempre apontando para fora e portanto
é sempré quase paralelo a d@. J4 na superficie fechada 2 as linhas de G entra.rﬁ. na pérte
mais perto do centro e saem na parte mais afastada, tal que toda linha que entra acaba
saindo e o fluxo liquido ¢é entéo nulo. Nas superficies fechadas 3 ¢ 4 as linhas entram dé
lade direito € saem do lado esquerdo tal que novamente o fluxo liquido é nulo.

O segundo teorema, (1.40), é conhecido como teorema de Stokes. Neste caso a
superficie § néo é fechada e C é a linha mais externa qhe contorna S. A integra.l. § G.dl
é uma integral de linha sobre toda a linha fechada €. O elemento de drea d@ é normal
4 superficie § em cada ponto e estd relacionado com dl pela regra da méo direita, por
convengio. O elemento de comprimento dl & sempre paralelo (tangencial) a C em cada
ponto. O simbolo Cg usualmente indica a circula¢io da grandeza G através de uma certa
linha C. Na figura 1.6 abaixo temos C; = C; = C4y = 0e C3 > 0 (< 0) se fizermos a
circulagio no sentido anti-horario (horério).
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G radial G tangencial
G = K#/r? G=Kp/p
Figura 1.6
(superficies abertas)

Este dltimo resultado pode ser visto observando que di ¢ quase pa.ra.ielo aG , apontando
sempre na mesma dinegéb em relacdo a (-}”, em todos os pontos de C3. Ja nas curvas fechadas
1e 2, di é em geral ortogonal a G, e entdo Gdl = 0, enquanto qﬁe na curva fechada 4,
e integrando no sentido horério, vem que di é anti-ba.ra.lelo. a G na parte da curva mais
afastada do centro e é quase sempre quase paralelo a G pa parte mais proxima, tal (iue as
duas componentes juntas se cancelam, :

Agora que ja falamos das fontes e dos significados das grandezas vetoriais, podemos
finalmente apresentar as equagoes de Maxwell. Inicialmente va.mos. apresenté-las na forma
diferencial, supondo as fontes e 0os campos no vécuo. Todas as grandezas séio funcdes
da posicio e do tempo: ¢ = ¢(z, ¥, z, 1), G = iCy(z, y, 2, t)+ §Gy(z, v, 2z, t) +
2G(z, vy, 2, t). As equactes de Maxwell sdo entéo: |

v.E=L£, (1.41)
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Vx§=p,,.r+§-5t—, (1.42)
v.-B=o0, (1.43)
VXE=—%—?—. (1.44.)

Em (1.42) a constance ¢ é dada por (£.u,)~*/? e tem o mesmo valor que a velocidade
da luz no vicuo. Como veremos no préximo capitulo, foi Weber quem introduziu pela
primeira vez esta grandeza no eletromagnetismo, em 1846, e foi ele talﬁbém o primeiro a
medi-la experimentalmente, em 1856, juntamente com seu colaborador Kohlrausch.

Alguns comentarios sobre estas equagdes: (1.41) ¢ conhecida como lei ou equagio de
Gauss, e ela é essencialmente equivalente & forga de Coulomb, (1.13) a ('i-.18), e mostramos
isto na se¢do 1.5. A segunda equagio € conhecida como lei circuital de Ampere, e o que
Maxwell a,cresceni:ou em relacdo ao trabalho de Ampére foi a introdugio da dénsidade
&e'.correnté de deslocamento, s,,aE’/at. Este termo também é chamade de corrcﬁte,
assim como J, jé& que apesar de nio indicar um transporte h’quido de cargas elétricas,
foi oBsérvadol que um campo elétrico variavel gera um campo magnético, e es-t'a.. € uma das
propriedades fundamentais das correntes elétricas usuais. A terceira equagéo represenizza..:li
observagéo experimental de que n#o se consegue separar espacialmente os pélos norte e sul
de neﬁhum ima ou corrente. A quarta e Gltima equagéo é conhecida como lei de Mﬁay.
Faraday descobriu a indugdo eletromagnética em 1831. Foram Franz Neumann (em 1845)
e Weber (em 1846) os primeiros a colocar a lei de Faraday em forma matemdtica. Este é
o assunto do capitulo 4. Os conhecimentos mateméiticos de Faraday sémpre foram muito
elementares, sendo ele essencialmente um excelente fisico experimental.

Vemos entdo que aquilo que se chama de equagtes de Maxwell séio de fato leis devidas
a outros pesquisadores e que ja eram conhecidas e usadas na época de Maxwell. O papel de
Maxwell foi perceber que este conjunto de equages formava um todo coerente, e introduzir
a corrente de deslocamento. Este dltimo feito fol realmente sua grande descoberta, j4 que

2 corrente de deslocamento & fundamental para se obter as ondas eletromagnéticas a partir
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das equagdes de Maxwell. Com isto se pdde unificar & éptica com o eletromagnetismo,
identificando a luz como sendo uma radiagéo eletromagnética. Maxwell introduziu este

termo (a corrente de deslocamento) para que este conjuﬁto de equagdes ficasse compativel

com a equacdo de continnidade para cargas, que também é conhecida como a equagio de
conservagio de cargas, € que é dada por:
dp

ot V.(p?)=0. _ (1.45)

Para ver isto vamos apresentar dois teoremas bésicos da anilise vetorial, vilidos para

quaisquer fungdes y e G razoavelmente bem comportadas:

V.(VxG)=0, - o (1.46)

Vx(Ve)=0. (1.47) .

Aplicando 8/t na Eq. (1.41), invertendo a ordem de derivagio, usando (1.42) e (1.46)

se obtem (1.45), lembrando que J = p7. Ou seja, para obtermos (1.45) foi fundamental o
termo da corrente de deslocamento em (1.42).

Apresentamos agora as equagdes de Maxwell na forma integral, obtidas a partir de
(1.41) a (1.44) e usando (1.39) e (1.40), ver exercicio 1.3: |

gﬁ.d&:g:;};/{[/pdlf, | A(1.48)

¢ dt
... 1d [ [a,, | .
_#o‘/‘;[.}'.da-l--c?afs'/Eda, (1.49)
#ﬁ.d“ =0, | (1.50)
fem = § Bdi=-2o —iffﬁda .(151)
R TSk S A Bt '



Para se obter as equagdes de ondas eletromagnéticas basta aplicar o rotacional (Vx)
em ambos os lados de (1.42) e (1.44), e usar a identidade vetorial

V x(VxG)=V(V.G) - (V.V)G. | (1.52)

No caso mais simples onde ndo ha fontes na regiao de interesse (p = 0, J= 0) se

obtem (ver também o exercicio 1.5 para o caso geral):

1 8%\«
(V.V - 'C—QE)E =0, | (1.53)
1 8\ |
(V.V - 2551_2)3 =0. (1.54)

O operador V.V ¢ conhecido como o Laplaciano e algumas vezes ele é escrito como -
V.V =V? = A, e é dado por:
3% & 8*
V.V = .
0z + dy? + oz
-Estas equagOes descrevem as ondas cletromagnéticas obtidas _'ﬂpelas equagdes de

Maxwell.

(1.55)

Antes de encerrar esta segio vamos falar um pouco da questdo dos potenciais ¢ e
A. Como vimos, as equagdes de Maxwell dependem apenas de Ee .§, e também a for¢a
de Lorentz (1.32) s6 depende de E e B. Isto indica que estes séo os campos reais do
eletromagnetismo cldssico, isto é, aqueles que influenciam na forca e no moviment6 das
cargas. Como vimos em (1.26) e (1.'31), podemos expressar E ¢ B em termos de ¢-¢ A.
Como o gradiente de uma constante é zero, podemos adicionar ou subtrair uma constante a
¢ alterar o valor do campo elétrico ou da forga, e da'mesma. forma podemos adicionar
a 4 o gradiente de uma fungio escalar ¢ sem alterar o valor de B (lembre-se de (1.47)).
Isto permite uma certa liberdade na escolha de Ae ¢, e é a isto que se dé o nome de caiibre
ou de gauge. Damos a seguir os calibres de Coulomb e de Lorentz, dados pela defini¢ao de |
V.A:

calibre de Coulomb : V.A=0, (1.56)

33



: y 1 9¢ :
calibre de Lorentz : V.A= ——5 2> . (1.57)

Vale ressaltar que tanto num calibre quanto no outro & for¢a de Lorentz é exatamente a
mesma. |
Usando-se estes calibres e as equagdes de Maxwell pode-se obter (ver exercicio 1.6)

equagdes de onda também para ¢ e A. No caso do calibre de Coulomb vem

Vi = uf- , : (1.58)
18\ » 0¢
(V"' - c_z'a?)A = —p,J + czv - (1.59)

A primeira destas equagdes ¢ conhecida como equagéo de Poisson.

J& no calibre de Lorentz vem

1 & p '
(v2 - F?ﬁ) =- (1.60)
(v’ —~ clz%)A = —pod . - (L81)

Numa regifio sem cargas e sem correntes vem de (1.60), (1.61), (1.53) e (1.54) que todas
as componentes retangulares de E, B, A, e ¢, satisfazem & mesma equagio.

Embora as equagbes (1.58) a | (1.61) sejam diferentes, e portanto déem soiuqées
diferentes, isto néo é problema ja qué no eletromagnetismo cléssico os campos reais sio £
eB,entode A. E tanto no calibre de Coulomb quanto no de Lorentz vem que EeB
satisfazem &s mesmas equacdes, (1.53) e (1.54), ou is equagdes gerais do exercicio 1.5.

Nos exercicios 1.7 a 1.8 indica-se como obter as equagdes de Gauss, (1.41), e de Faraday
(1.44), a partir do campo elétrico que aparece na forga de Lorentz. A derivacéo das leis
de Ampére, {1.42), e dos monopdlos magnéticos, (1.43), é assunto do terceiro capitulo.

De maneira extremamente reduzida e simplificada podemos. dizer que a segunda
lei de Newton acoplada & forga de Lorentz, juntamente com as equacbes de Maxwell

e as equagdes constitutivas do meio constituem o cerne do eletromagnetismo cléssico.
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Antes de prosseguirmos vamos fazer alguns comentdrios importantes. Como jé falamos
anteriormente, as equagdes de Maxwell sdo independentes da forga de Lorentz. Isto significa
que as equagdes de Maxwell poderiam continuar vilidas mesmo que tivéssemos uma lei
de forga para cargas elétricas diferente da forca de Lorentz. Um outro dado é que as
equagdes de Maxwell sdo independentes entre si, no sentido de que n&o se. consegue, por
exemplo, derivar 2 lei de Faraday da lei circuital de Ampre, e vice-versa (ver porém o
exercicio 1.9). Contando cada equagéio vetorial como uma equagéo, temos entéo gue.o
eletromagnetismo cldssico € composto de cinco equagdes independentes (Newton-Lorentz

mais as quatro equagoes de Maxwell), além das relagdes constitutivas do meio.
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1.5 - Derivagiib da Lei de Gauss

Nesta segéio vamos derivar a lei de Gauss a partir da forca de Coulomb, (1.13). Esta-
forga no caso da interagéo de g, com outras N cargas pode ser escrita como (1.14), com
o campo elétrico dado por (1.15). De (1.15) vemos que o campo elétrico de cada carga
0j» E,- = gjfoj/(47e,rs;), aponta radialmente a partir desta carga e cai com o quadrado
da distancia. Para chegar na lei de Gauss vamos supor inicialmente uma dnica cargd g; ‘e

T,

uma superficie fechada S, como indicado na figura 1.7.

Figura 1.7

Seja dd, um elemento de &rea desta superficie localizado no ponto 7, e apontando
sempre para fora, por convengdo. E facil ver que
gj cos®@

yovy ——;_-g-’—ida,, , (1.62)

E;.dd, =

onde 8,; é o angulo entre 7,; e dd@,. Como E,- aponta radialmente a partir de g;j, vem que
cos 8yda, = rzjdﬂ, j» onde df},; é o elemento de dngulo esférico subentendido por da, na

posicéio de g; (ver figura 1.7). Logo

E;.dd, = 4:2 aQ,; . (1.63)
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Integrando E",-.d&’o sobre toda a superficie 5, é facil ver que §; dQ,; = 47 se g; estiver
dentro da superficie S,, € fs, dd,; = 0 se g; estiver fora da superficie $,. Usando o

principio da superposi¢io para somar a contribui¢io das N cargas vem entio

ﬂ Eda,,:.——Zq, —j/jpdV,, (1.64)

¢ j=1
onde a soma.tona E,—: se estende apenas as cargas que estdo dentro de So, ea ulfuna
igualdade é obtida supondo-se uma dlstnbmgao continua de cargas, ¢ — pdV, sendo V.o
volume englobado por S,. E esta é a forma integral da lei de Gauss, Eq. (1.48).
Para se chegar na forma diferencial da lei de Gauss; (1.41), basta usar o teorema de

Gauss, (1.39). Com isto vem

]f/ (V.E" - é)dVo =0. . (1.65)
V. -

Como esta equagdo ¢ valida qualquer que seja o volume V, vem que o integrando tem de
ser nulo, e entdo chegamos a (1.41).

Uma outra prova usendo propriedades mais avancadas do cdlcule vetorial pode ser

obtida através do potencial de Poisson, (1.16), além de (1.18) e (1.55):

/ V/ J@Bav.=- [ V/ [ (Vo v, *
=‘ff_/V3¢'=f;4;:afjjq,-(v?,;i_j)dvo, (1.66)
Vo = v |

Como mostramos na secao 3.5, ha um resultado importante da anélise vetonal que

diz que

vﬁ— = —4né(F, — 75) (1.67)

Toj

onde &(7, — ;) é conhecida como a fungéo delta de Dirac. Suas propriedades:

6(7» —75) =0 para 7% #75 , (1.68)
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[ [ [ sose-mpav.
Ve :

= f(¥;) se V, contem ¥} ,

{ } (1.69)
= 0 se V, néo contem 7 .

Aplicando (1.67) em (1.66) se chega em (1.64) ou (1.65), desde que se use também o

teorema de Gauss (1.39). E dai se chega na forma diferencial da lei de Gauss, CQD.
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1.6 - Exercicios

1.1 - Mostre que —V,¢, com ¢ e V,¢ dados por (1.16) € (1.17), € 0 mesmo que E
dado por (1.18).

1.2 - Refaca explicitamente todas as contas indicadas no texto para mostrar que as
equacoes de Maxwell (1.41) e (1.42) sio compativeis com a equagdo de continuidade, (1.45).
Qu seja, derive (1.45) a partir de (1.41) e (1.42).

1.3 - Reobtenha explicitamente as equagdes de Maxwell na forma integral, (1.48) a
(1.51), a partir de (1.41) a (1.44), usando os teoremas de Gauss e Stokes, (1.39) e (1.40),

e usando também as identidades vetoriais (1.46) e (1.47).

1.4 - (A) Prove as relagdes (1.46) e (1.47) usando as expressbes de Vi, VGe Vx G
em termos das componentes dadas por (1.17), (1.27) e (1.38). Para isto suponha fungdes

bem comportadas tal que a ordem de derivagao possa ser invertida.

- (B) Use (1.17) e (1.38) para mostrar que

% Po Py
V-V = 5s T T o

Como j4 fot dito, esta expressio é conhecida como o Laplaciano de .

1.5 - O objetivo deste exercicio é obter as equacdes de onda no caso geral, vilidas
também numa regido onde hé cargas e correntes. Para isto vai-se usar a identidade vetorial
(1.52). Nesta expressio o Laplaciano é dado por (1.55). Suponha que os campos E e B

siio fungdes bem comportadas tal que se possa inverter as ordens de derivagéo.

" (A) Aplique o rotacional de ambos os lados da lei de Faradsay, (1.44), use a identidade
vetorial acima, a lei de Gauss, (1.41), e a lei circuital de Ampere, (1.42) para obter a
equagio de onda '

39



2 18\p_1lg,,,.%7
(V czatz)E-eon+u°3t .

(B) Aplique o rotacional de ambos os lados da lei circuital de Ampére, (1.42), use a
identidade vetorial acima, a equagio (1.43), e a lei de Faraday, (1.44), para obter a equagéo

de onda

1.6 - Agora podemos obter as equagdes satisfeitas por ¢ e A

(A) Aplique as expressdes para E e B em termos de ¢ e A, dadas por (1.31) e (1.26),
nas equagdes de Maxwell (1.41) a (1.44). Observe que no caso de (1.43) e (1.44) se obtem
simplesmente a identidade 0 = 0.

(B) Use entiio o calibre de Coulomb, (1.56), para chegar em (1.58) e (1.59).

(C) Em vez do calibre de Coulomb use agora o calibre de Lorentz, (1.57), no resultado
obtido na letra (A), para chegar em (1.60) e (1.61).

1.7 - O campo elétrico que aparece na forga de Faraday € dado em termos dos potenciais
em (1.31).
{A) Obtenha dai

1l

V.E=-V? —%(V.j’).

(B) Use o calibre de Coulomb, (1.56), e sua correspondente equagio de onda, (1.58) e
(1.59), para chegar em (1.41). : |

(C) Use agora o calibre de Lorentz, (1.57), e sua correspondente equacio de onda,
(1.60) e (1.61), no resultado da letra (A}, para chegar em (1.41).

1.8 - Derivagio da lei de Faraday a partir do campo elétrico que aparece na fbrga. de
Lorentz. _
(A) Aplique o rotacional nos dois lados da expressio para E em (1.31).
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(B) Use (1.47) e (1.26) para chegar em (1.44).
Este exercicio ilustra o fato de que apenas a componente 3;;/3{ do campo elétrico é

televante para a lel de Faraday.

1.9 - Suponha que as fungdes EeB sejam bem comportadas tal que se possa inverter
a ordem de derivagao.
(A) Aplique o divergente de ambos os lados da lei de Faraday, (1.44), e use (1.46)
para concluir que (V.5)/8t = 0, isto é, que V.5 néo depende explicitamente do tempo.
(B) Faga agora a hipStese adicional (isto ndo vem de (1.41), (1.42) nem (1.44)) de
que em a]gum momento do passado V_.ﬁ = 0 em todos os pontos do espago. Com esta
hipétese adicional se chega entdo em (1.43).
| (C) Aplique o divergente de ambos os lados de (1.42) e a relagéio (1.46) para concluir

que

(D) Use agora a equagio de continuidade (que nio pode ser derivada apenas de (1.42)
0(1.44)), Eq. (1.45), mais o fato de que J = p¥ para derivar a lel de Gauss (1.41), a menos
de uma constante que pode ser fixada como zero.

“Este exercicio ilustra que s6 se pode derivar alguma das equagdes de Maxwell a partir

das outras trés caso se fagam outras hipéteses adicionais.
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2) Forca e Energia Potencial de Weber - . °

2.1 - For¢ca de Weber

Neste capitulo vamos discutir a forca de Weber e algumas de suasl principais,
caracteristicas. Para uma biografia de Weber ver, por exemplo, (Wiederkehr, 1967; Werner
e Werner, 1976; Woodruff, 1976 e Assis, 1991 b). Os principais trabalhos de Weber estao
listados na bibliografia ao fim deste livro em seguida & palavra “Weber.”

Wilhelm Eduard Weber (1804 - 1891) foi um grande fisico experimental aleméo
que deu contribuigbes fundamentais para o eletromagnetismo, como-a invencao do
eletrodinamémetro {aparetho para medir a for¢a entre dois fios com corrente elétrica).
Criou, juntamente com Gauss, o primeiro telégrafo operacional do mundo (1833}
Estabeleceu, também com Gauss, um sistema de medidas absoluto para grandezas
eletromagnéticas (campo magnético, corrente elétrica, resisténcia, etc.) Durante alguns
anos a unidade de corrente elétrica foi chamada de Weber em reconhet:lmento a0 seu
traba.lho expenmental até que em 1881 resolveu-se cha.mar de Ampérc a esta. med:da. num
congresso internacional reallzado em Paris. Desde 1935 que se demgna. por Weber a umdade
de fluxo ma.gnetlco no sistema internacional de unidades. Trabalhou em Gottmgen onde f01.
colega de Gauss, que também era professor na mesma universidade, e chegou a ser professor
na universidade de Leipzig no periodo entre 1843 e 1849, que é quando desenvolveu seus
principais trabalhos tedricos. E durante este periodo, mais especificamente em 1846, que
desenvolve e publica sua lei de for¢a entre duas cargas elétricas (Weber, 1846 e 1848). Para
estas e outras informagdes ver também: (O'Rahilly, 1965, Cap. 11; Whittaker, 1973, pig.
201; Wise, 1981; Harman, 1982, pags. 32, 96, 103 a 107; Atherton, 1989; e Jungnickel e
McCormmach, 1986).

A forga de Weber que uma carga ¢; exerce numa carga ¢; é dada por

.2 -
= qiq; l"l.r Tij | TifTij ;
Foi= 1 — 3 .

BT dme, rY ( 22 T @ ) ’ (2.1)

onde
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d

f‘.‘j = Er.—,- ’ (2.2)
. dz d . . .
rg; = Eﬁf‘.‘j = *&—tr,',‘ ’ . (23)

e onde r;; e f;; sio dados por (1.9). No préximo capitulo veremos de onde veio esta
forca, ou seja, para que se pudesse derivar de uma tnica lei os resultados de Coulomb
e de. Ampére. Como a forga de Coulomb depende de unidades eletrostiticas e a de
Ampeére de unidades eletrodindmicas, a constante ¢ que aparece em (2.1) é a razédo
entre as unidades eletromagnéticas e eletrostaticas de carga. Seu valor foi primeiro
obtido experimentalmente por Weber e Kohlrausch em 1856, e o valor que obtiveram foi
3.1x10® m/s, que era essencialmente, dentro dos erros experimentais, o valor da velocidade
da_._luz. no vacuo (Kohlrausch e Weber, 1857; Rosenfeld, 1956; e Kirchner, 1957). Esta foi
a primeira evidéncia forte para a existéncia de uma conexéo profunda e precisa entre o
eletromagnetismo e a éptica. Maxwell utilizou este valor obtido por Weber e Kohlrausch
em seu Tratado (A Treatise on Electricity and Magnetism) para justificar sua prépria teoria
eletromagnética da luz {ver Maxwell, 1954, Vol. 2, pags. 416 e 436). Lembrando entdo
que se vai obter a lei de Ampére a partir da lei de Weber, e estando ambas no sistema
internacional de unidades, vem que se pode colocar ¢ = (10€0) /% em (2.1). Pode-se dizer
que Weber e Kohlrausch foram os primeiros a medir (#o¢,)~1/2.
. As principais propriedades da forga de Weber sao:

(A) Ela segue a terceira lei de Newton (a de agéo e reagio) na forma forte, qualquer
que seja o estado de movimento das cargas. Isto é, a forca estd sempre ao longo da reta
que une as duas cargas e Fy; = —F};. |

(B) A lei de Coulomb é um caso particular da lei de Weber, obtida no caso em que
as cargas estdo paradas uma em relagéo & outra. Ou seja, quando 7;; = 0 € 7;; = 0 vem
que (2.1) se reduz a (1.13). Como a primeira das equagbes de Maxwell, a lei de Gauss,
essencialmente nada mais é do que a lei de Coulomb escrita de forma diferencial (ver segao
1.5), vem que com a forga de Weber pode-se derivar a primeira das equagdes de Maxwell,

juntamente com a primeira parte da forga de Lorentz, —¢V¢ em (1.32).
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(C) A equagdo de movimento é obtida juntando-se (2.1) com a segunda lei de Newton,
(1.7).

(D) A velocidade e aceleragdo que aparecem em (2.1) sio apenas as velocidades e
aceleragtes radiais entre as duas cargas, como dado por (2.2) e (2.3). Isto nos leva &
dltima e fundamental propriedade da lei de Weber:

(E) Na lei de Weber s6 aparecem grandezas relacionais para especificar a posigéo e o
movimento das cargas. Isto é, as tinicas grandezas que vao interessar para saber a for¢a séio
7 — 75, |7 — i, drij/dt, e &r;;/dt?. Isto significa que cada termo da for¢a tem o mesmo
valor para. todos os observadores, mesmo se os observadores forem néo iJleI:cia.is. O vetor
7; que liga um observador O a carga ¢ pode ser diferente de um vetor r"}' que liga 8 mesma

- -

carga a um outro observador 0’. Mas o vetor 7j; = 7; — ¥j que liga a carga § & carga 1 é

- i
o mesmo tanto para O quanto para O, isto é, 7, 3

= 7-"}3'. O mesmo vale para riy, f".'j e !.",'J'.
Por isso se diz que estas sio grandezas relacionais, que dependem apenas das relagdes entre
0s corpos que estao interagindo, mas que nao dependem de quem esta observando. Como
se mostra no exercicio 2.2, as grandezas relacionais séo 75, rij, Fij, T € Fij. Exémplos-de
grandezas niao relacionais: I'-"", ?-‘;‘, '!-J',', ‘!T"_,'., (-1',', &.J', t?,'j, &',-J-, 'l-;,'j “l?.'j, &',-J- -&‘,-,-, F.'J' °E,'J', 1:'.'_,‘ -E:‘,—,—,
etc.

Foi dada uma énfase major neste ultimo aspecto ja que a lei de Weber é uma das 1inicas
formulagoes ja propostas para abranger os fendmenos elétricos e inagnéticos que tem esta
propriedade. As outras formulagdes como as de Gauss, Riemann, Clausius, Lorentz, etc.,
ou dependem da velocidade da carga em relagéo ao observador, ou da velocidade da carga
em relagao a um éter. Vamos ver um exemplo disto no caso da forga de Lorentz. Se
numa certa regifio do espago hd apenas um campo magnético estacionério (gerado por
exemplo por um ima em repouso em relagéo a um referencial inercial 0), € um observador
em repouso neste mesmo referencial vé uma carga g se movendo com velocidade ¥ nesta
regido do espago, entéo ele verd a carga sofrer uma for¢a magnética dada por (1.19) ou pelo
ultimo termo de (1.32). Para um outro observador Q' que neste mesmo instante esta se
movendo com velocidade constante ¢ em relagao a O (sendo portanto um outro observador

inercial} néo vai haver nenhuma forca magnética sobre a carga jé que em relagio a ele a

carga ests instantaneamente parada (¥ = 0) e entdio ¢7 ' x B' = 0 para ele. Vemos com

44



isto que a for¢a magnétice no eletromagnetismo cléssico pode ser distinta mesmo para dois
observadores inerciais. Voltaremos a discutir este assunto em mais detalhes no capitulo 5.

Usando-se (2.2) e (2.3) pode-se colocar a for¢a (2.1) na forma (ver exercicios 2.1 ¢
2.2):

qu s .-._-..:_.
Fy= ﬁejj;% [l + -L;,—(vi,' - U5 ~ -2-(".'5 - Ti)t + 7 .-Gij)] y . (2.4)

onde

i d , Y _
.','E-‘E(.—r,;)s i — U5 , f(2.5)
- d? - — - .

Gij = @("a‘ —-fi)=a—dj. . - (2.6)

Chamamos & atengio para os exercicios 2.1 e 2.2 pois neles se mostra que nem sempre
f;; & igual a (7 -0;;)'/%. Além disto se mostra que 7;; é uma grandeza relacional enquanto
que (#;; - #i;)/% pode variar de observador para observador. Em particular no exercicio

2.1 ‘se mostra que

) dri; . .
ri; = Td-‘-;l = fi; - U5 , (2.7
- CF 1 - - ~ - -t -t .
Fij & =iy = — [0 - Ty — (75 - )% + 7 - @] - (2.8)
f"l’
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2.2 - Energia Potencial de Weber

A lei de Weber foi o primeiro exemplo histérico que surgiu de uma forca entre cargas
que dependia nac apenas da distancia entre elas mas também de suas velocidades. Isto
gerou criticas por parte de alguns cientistas da época que achavam que esta forca era
inconsistente com o principio de conservacao da energia. Foi entio que dois anos depois,

em 1848 (Weber, 1848), Weber apresentou sua energia potencial generalizada definida por:

v 1 ) |
Usfé’:a(ui’;) . (2.9)
O primeiro termo desta energia é a energia potencial Coulombiana usual, enquanto
que o segundo termo é uma mistura de energia cinética e potencial ja que depende nao s6
da distancia entre as cargas mas também de suas velocidades mutuas. Este também foi
o primeiro exemplo que surgiu na ciéncia de uma energia potencial generalizada. Assim
como no caso da energia potencial Coulombiana, pode-se pensar eﬁl U de (2.9) como sendo
a energia gasta para formar o sistema. Isto é, U é a energia que tem de ser dispendida para
trazer ¢; e ¢; desde o infinito (onde se considera que estdo em repouso e a uma distancia
infinita uma da outra) até chegarem a separacio r;; com velocidade relativa ¢;;. Esta
en.ergia é gasta contra a forga de Weber (2.1) atuando entre as duas cargas.

A maneira mais simples de derivar a for¢a desta energia potencial é fazendo
Fjy = —f-.-,-a‘f% . | (2.10)
A forma detalhada de chegar em (2.1) a partir de (2.10) esta indicada no exercicio 2.3.

Uma outra maneira de obter a for¢a a partir do potencial é indicada na préxima segdo.
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- 2,3 - Conservagao do Momento Linear, do Momento Angular ¢ da Energia

Um dos aspectos de maior importéncia na fisica classica séo as trés leis bésicas de
conservacao: energia, momento linear e angular. Vamos aqui mostrar que a lei de Weber,
juntamente com sua energia generalizada, satisfaz a estas trés leis capitais. Inicialmente
vamos tratar do momento linear.

A conserva¢ao do momento linear segue diretamente do fato de que a forga de Weber
satisfaz ao principio de acéo e reacdo. Este fato independe até mesmo da forma da forga,
bastando que valha 17"'_,-,- = -—F—.‘.- j» como € o caso da lei de Weber. Escreﬁendo entdo o

momento linear total de um sistema de duas particulas em relacao a um referencial inercial

vem

"P= mivi + m;v; . (2.11)

Derivando esta expresséo em relagio ao tempo, usando (1.7) e a lei de agéo e reagdo, (1.6),
vem dﬁ/dt = 0, CQD. Este principio pode ser generalizado para um nimero qualquer
de particulas interagindo por meio de vérias forgas (Weber, eléstica, gravitacional, etc.),
desde que estas forgas satisfagam ao principio de acio e reacdo (ver exercicio 2.4).

Em segundo lugar vem a questdo da conservagéo do momento angular. Consideramos
novamente um referencial inercial no qual duas particulas interagem entre si através de

uma forca de Weber. O momento angular total do sistema é definido por

E = 1’-", X (m,-f:',-) + Fj X (m,-ﬁ'j) . . (212)

‘Fazendo dL /dt, usando as regras usuais da andlise vetorial, lembrando que ¥ x ¢ = 0,
usando (1.7) e a lei de acao e reagdo vem:
dL . .. &
E-—:(r,'"rj)XFj.' . (2.13)
Até o momento néo foi utilizada a lei de Weber, a nfio ser no fato de ela satisfazer ao

principio de ag@o e reagdo. Usando agora que ela satisfaz a este principio na forma forte,

ou seja, que F}-,— é paralelo a 7i;, vem que dL/dt = 0. Novamente este resultado nio
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dependeu da forma explicita da for¢a de Weber, mas apenas de esta forga satisfazer ao
principio de ag&o e reagio, neste caso na forma forte. Este resultado pode ser generalizado
a um nimero qualquer de particulas interagindo entre si por forgas de qualquer natureza,
desde que satisfacam ao principio de agéo e reacéo na forma forte (ver exercicio 2.5).

Por 1ltimo vem a conservagéo de energia. Supondo que temos duas cargas ¢; e g;, de
massas m,; e m;, interagindo entre si através de uma forca de Weber temos que a energia

total do sistema é dada por:

E=U+T, (2.14)

onde U é a energia de Weber dada por (2.9) e T é a energia cinética dada por

(2.15)

onde ¢ = dr/dt é a velocidade da particula em relagio a um observador inercial qualquer,
Derivando E em relagdo ao tempo, usando (1.7) e a terceira lei de Newton, (1.6), e

também o resultado do exercicio 2.1 sobre o significado de #;; vem que obtemos, lembrando
de (2.1):

%?- =0, CQD. (2.16)

Este resultado pode ser generalizado facilmente para um nimero N de particulas
interagindo entre si por forgas do tipo de Weber. Este é o objetivo do exercicio 2.6.
Obviamente o resultado vai continuar vélido se elas interagirem entre si também através
de outras forcas conservativas (como forgas eldsticas'ou gravitacionais); além da interagio
eletromagnética de Weber.

Este procedimento sugere uma nova forma de determinar a forga a partir do potencial:
Dada uma energia potencial U, a forca de 7 em 1, ﬁ_,-,- , pode ser obtida fazendo (ver exercicio

2.7):

Kl

— = —(fi =)

a i (2.17)
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Nesta secéo vimos entéo que a teoria de Weber é compativel com toda a fisica c_léssica.
j& que com ela se derivam as leis de coﬁserva.gio basicas a toda a fisica: conservagio do
momento linear, do momento. angular € da energia. Este é um dos resultados fortes e
importautes da eletrodindamica de Weber.

No apéndice B apresentamos a Lagrangeana e a Hamiltoniana de Weber, indicando
maneiras alternativas de se derivar a fort;é. de Weber, as equagdes de movimento e a

conservacao da energia.
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2.4 - Exercicios

2.1 - Use as equagdes (1.9), (2.2) e (2.3) para mostrar que (use também as definigGes
(2.5) e (2.6)): : .

(A) fij =i - Tij

(B) Fij = ;[0 - 045 — (Fij - 05)% + 75 - &)

{C) Utilize os resultados deste exercicio para chegar em (2.4) a partir de (2.1)."
2.2 - Uma outra expressio que &s vezes ¢ usada como velocidade relativa é dada por

uij = (5 - 032 = (85 = 55) - (& — T2

Embora na maioria dos casos u;; dé o mesmo valor que r;;, isto nem sempre ocorre.
Em particular u;; néo é verdadeiramente uma grandeza relacional, ji que o valor desta
grandeza pode variar de observador para observador. As grandezas realmente relacionais
s80: Tij, Tijy Tij, tij € ¥ij. Apresentamos também alguns exemplos de grandezas néo
relaciona.is: F..‘, 1:3', -t—J..', 173', (-1',', (-I.J', Uij, ‘t-}.,'j, C_l.,'j, (C-I.,‘J' '&,‘j)llz, T‘n,'j 'E.‘:‘,‘ﬁj ‘E{j, etc.

(A) Considere um observador ou sistema de referéncia O no qual a particula pontual i
estd sobre a origem do sistema de coordenadas, em repouso, € no qual a particula pontual
; esta sobre o eixo X & distdncia p da origem, também em repouso. Mostre que

— —y

Uy =0;=0; =0, equer;; =u;; =0.

(B) Seja O' um outro sistema de referéncia com mesma. origem que O € que em ¢ = 0

tenha seus eixos X'Y'Z' paralelos a XY Z, mas que gu‘e com velocidade angular constante

- P ! ! - . - - ! ¢
w2 em relagio a 0. Mostre que ¥; =0, ¥; = —pw(Z'sinwt + §' coswt), ¥;; = -,
5. o s - -
0, %;; # Uij, € que f{; = 0, mas u}; = pw # 0.

Este exemplo simples e particular é para mostrar que u;; ndo é uma grandeza
relacional, enquanto que #;; é relacional (neste caso vimos que f{; = f;;, enquanto que
I S
uj; # uij) .
) * - ! ”~ — f ~
{C) Encontre exemplos mostrando situagdes onde &;; # dij, fi; - d;; # fij - dij, etc.

50



2.3 - Na situacdo mais geral possivel temos que duas particulas ¢ e j se locomovem
no tempo quando estdo interagindo entre si de tal forma que 7; = F;(f) e 7; = 7;(t). Isto

naturalmente leva a que r; = |f;;| = r;;(1). Use a regra da cadeia para mostrar que

2
df'"j

drij
Use este resultado juntamente com (2.9) e (2.10) para chegar em (2.1).

= 2F;; .

2.4 - O objetivo deste exercicio € generalizar o resultado da conservagdo do momento
linear.
~ (A) O momento linear de trés corpos ¢ definido por P= E?=1mgt':'i. Suponha que
estes corpos apenas interagem entre si através de forgas de Weber do tipo (2.1). Mostre.
que dP/dt = 0 utilizando (1.6), (1.7) € o fato da forca de Weber satisfazer ao principio de
acdo € reacao. Suponha que ndo hajam forgas externas.
(B) Generalize o resultado anterior para N corpos interagindo entre si por forgas
de Weber e também por outras forcas (gravitacionais, eldsticas, etc.), desde que elas
também satisfacam ao principio de acdo e reagdo. Novamente suponha que néo hajam

forgas externas.

2.5 - O objetivo deste exercicio é generalizar o resultado da conservacio do momento
angular.

(A) O momento angular total de um sistema de trés corpos é definido por I=
EL,F ; X (mi¥;). Suponha que estes corpos apenas interagem entre si através de forgas
de Weber do tipo (2.1). Mostre que dL/dt = 0 utilizando (1.6), (1.7) e o fato da forca de
Weber satisfazer ao principio de agéo e reagio na forma forte (F’},- paralelo a #;;). Suponha
que ndo hajam forgas externas.

(B) Generalize o resultado anterior para N cargas.

(C) Generalize o resultado anterior para N corpos interagindo entre si por forcas de
Weber e também por outras forgas, desde que elas também satisfagam ao principio de agio
e reacio na forma forte {como é o caso da forga gravitacional Newtoniana, da forca eldstica

de Hooke, etc.) Novamente suponha que néo hajam forcas externas.
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2.6 - O objetivo deste exercicio é generalizar a lei de conservagdo de energia para N
cofpos‘.

{A) Siga novamente a secio 2.3 refazendo todos os calculos explicitamente, seguindo
os passos indicados, até chegar em (2.16).

(B) Considere agora o caso de trés corpos de cargas q;, ¢z € ¢3; € mMassas m,, mjy €
my, interagindo entre si por for¢as de Weber (2.1). Defina a energia total do sistema por
(Usij sendo dado por (2.9)):

myv? + mgvg m3vl

2 2 2
Mostre que dE/dt = 0 usando (1.6), (1.7), (2.1}, (2.9), e usando um procedimento

E=Up+Uis+Un+

como o da letra (A).

(C) Generalize o resultado anterior para N corpos usando como energia total a

expressio (lembre-se que Uj; = Uj;5) -
Y 5w
1 t
E= §ZZU-':'+E"‘- 7

~ onde U,; é dado por (2.9). Mostre entdo que dE/dt = 0.

(D) Generalize ainda mais o resultado anterior supondo que as particulas estéo
interagindo entre si também através de outras forcas conservativas (como através de forcas
gravitacionais ou elasticas) além da interagdo eletromagnética de Weber. Suponha para
isto que estas outras forgas também seguem o principio de agéo e reagdo e que podem ser
derivadas de uma energia potencial que depende apenas da disténcia entre elas (como é o

caso da for¢a gravitacional Newtoniana ou da forga elastica Hookiana).

2.7 - Seja U dado por (2.9). Utilize (2.17) como uma defini¢io de Fy;. Fazendo entéo
dU/dt e utilizando o exercicio 2.1 mostre que se pode chegar na forca de Weber dada por

(2.1). Esta é entéo uma maneira alternativa de chegar na forca de Weber sem passar por
(2.10).
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3) Leis de Forga entre Elementos de Corrente

3.1 - Forgca de Ampére e sua Derivacao a partir da Forca de Weber

No capitulo anterior apresentamos a lei de Weber e suas principais caracteristicas.
- Neste capitulo vamos usar a lei de Weber para derivar a lei de Ampere para a forca entre
dois elementos de corrente. Este é um dos principais resultados qﬁe se pode obter com
a forca de Weber. Historicamente o caminho utilizado foi o oposto ao que. apresentamos
-aqui, ou seja, Weber obteve sua lei de for¢a a partir da forca de Ampeére entre elementos
de corrente, introduzindo a hipétese de que as correntes elétricas nada mais sio do que
cargas elétricas usuais em movimento.

O principal resultado experimental obtido por Ampére (1775 - 1836) em suas pesquisas
¢ o de que a for¢a exercida por um elemento de corrente I dl; em um elemento de corrente

Iidl, é dada por {quando os elementos de corrente sdo neutros eletricamente) -

FFf = —-ff—;’r—flfz',’j—;‘l[zcdﬁ +dly) = 3(F12 - dly) (P12 - dD3)] . (3.1)
12
Trocando-se os indices 1 e 2, observando que 713 = —f2;, € que A.B=E. A vem:
- ]: - - " - " - — l
| &Fh = %1112;5—2—[2(&1 <dly) — 3(F13 - dly) (F12 - dly)] = -sz2’} . (3.2)
12

Ampére chegou neste resultado final em 1823, em seguida a um trabalho experimental

| e tedrico intenso que realizou depois da descoberta fundamental de QOersted, em 1820, da
deflexdo de uma agulha magnética colocada préxima € paralela a um fio com corrente. Seus
principais trabalhos foram publicados em 1825 (Ampere, 1825, 1883 e 1958). A melhor
andlise do trabalho de Ampére é sem diivida o livro de Blondel (Blondel, 1982). Uma
discusséio muito instrutiva se encontra também em (Tricker, 1965). O trabalho fundamental
de Qersted j4 estd traduzido em portugués, com tradugio de Roberto de Andrade Martins

(Oersted, 1986; e Martins, 1986 a). Para uma excelente discusséo do trabalho de Qersted,

seus antecedentes e sua influéncia ver: {Martins, 1986 b). Vale & pena ressaltar que
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" Maxwell (Maxwell, 1954, artigo 528, pdg. 175) chamou & Eq. (3.1) de lei cardinal (mais
importante) da eletrodinamica, e que esta lei sempre deveria permanecer nesta situagéo.
Maxwell tinha tanta admiragiio por Ampére que o chamou de “Newton da eletricidade.”
Whittaker diz que este trabalho de 1825 de Ampere é uma “das memoérias mais celebradas
na histéria da filosofia natural” (Whittaker, 1973, pég. 83).

Talvez o principal aspecto a ser ressaltado na forga de Ampeére é o fato de ela satisfazer
a terceira lei de Newton na forma ‘forte, qualquer que seja a posicao e orientacdo relativa
entre os dois elementos de corrente. Isto &, d*FA = —d?Ffl e d?Ff ¢ paralelo a #,
qualquer que seja o valor de dl-; -df;, f1g * df; e fip - df;. |

Weber obteve sua lei de for¢a em 1846 seguindo a hipdtese de Fechner (Fechner, 1845)
de que a corrente elétrica é constituida de cargas positivas fluindo na direcéo da corrente e
de cargas negativas de mesma magnitude que as cargas positivas (dgy— = —dg 14 ) fluindo
na dire¢éo oposta, com uma velocidade de mesma intensidade (%, = —0,4). Sugerimos
os livros de Maxwell (Maxwell, 1954, Vol. 2, Capitulo 23), de Whittaker (Whittaker, 1973,
pags. 200 a 211) e de O’Rahilly (O’Rabhilly, 1965, pdgs. 102 a 113 e 518 a 523) para quem
estiver interessado em seguir o procedimento seguido por Weber.

No exercicio 3.1 (um desenvolvimento mais completo se encontra em (Assis, 1990 b))
estd indicado o caminho oposto, ou seja, para se derivar a Eq. (3.1) a partir da forga
de Weber, (2.1) ou (2.4). Para isto tem-se de usar a relagdo usual entre um elemento de
corrente e as cargas em movimento, relagio também introduzida por Fechner e Weber, e

dada por (no caso de elementos de corrente filiformes neutros eletricamente):

Ll = My dh 814 4+ M —dly @2 = Ay dli (T4 — 512) , (3.3)

Igdrz = /\2+dlzt-}.2+ + Aa_dlath_ = A2+d12(l-}.2+ - 1-)'2...,) . (34)

Nestas expressdes Aiy (Ai-) sdo as densidades lineares de carga (quantidade de carga por
unidade de comprimento) positiva (negativa) dos elementos de corrente Ldl, i = 1, 2. A
condico de neutralidade elétrica significa que A\i_ = — ;5.

O ponto importante deste exercicio é que se consegue derivar (3.1) sem usar a hipdtese
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de Fechner de que as cargas positivas e negativas numa corrente se movem em diregdes
contrarias com velocidades de mesma magnitude (hoje em dia sabe-se que isto nao € correto
e que num fio metdlico usual apenas as cargas negativas (os elétrons) se movem). Ou seja,
partindo da lei de Weber, de (3.3) e de (3.4) chega-se em (3.1) mesmo quando apenas
uma das cargas se move (como no caso de um fio metilico comum}), ou quando ambas
se movem em sentido contrario mas com velocidades de diferente magnitude (como num
plasma gasoso usual onde a razdo entre a velocidade dos ions e dos elétrons estd como
o inverso da razdo entre as massas, isto é, v; ~ ~(m;/m;)v;). Isto mostra que & forca
de Ampére pode ser usada n3o apenas em correntes metélicas, mas também em plasmas
gasosos, situagdes de eletrdlise, etc.

Um outro aspecto importante que se pode observar ao realizar este exercicio é que a
expressao (3.1) continua vilida em situagdes onde as cargas estdo aceleradas. Isto é, ndo é
necessario impor que os termos de aceleragéo sio nulos em (2.4) para se chegar em (3.1).
Isto indica que a for¢ca de Ampére pode ser aplicada mesmo em situagdes néo estacionarias
quando as correntes estfio variando no tempo {como em circuitos com corrente alternada
ou quando se liga ou desliga a corrente num circuito).

Calculamos agora a energia potencial entre dois elementos de corrente neutros
eletricamente I,dl; e I,dl de acordo com a lei de Weber, utilizando (2.9). Seu valor
€ o mesmo que o trabalho necessirio para trazer os dois elementos de corrente desde uma

distancia infinita até as posi¢des e orienta¢des finais, € é dada por

d2U = dQU-H.' 1+ +d2U2+' 1— + dzUz_, 1+ + dng_, 1— . (35)

Utilizando (3.3) e (3.4) podemos escrever esta expressdo como

(12 + diy )(F12 - di;)

T2

aU =Eegr .
U 47‘_11 2 (3.6)
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3.2 - Forca de Grassmann e Lei de Biot-Savart

Apesar dos elogios de Maxwell, Whittaker e outros, a for¢a de Ampére (3.1) é pouco
conhecida hoje em dia e néo aparece mais em quase nenhum livro diditico (nem nos
elementares a nivel de ciclo basico, nem nos avangados a nivel de pos-graduacao). Em vez

disto s6 aparece a forga de Grassmann dada por

d?FS = ndl x dB; , ‘ (3.7)
=3 Ho 1 T - ’ . | 7
ng = 4—7;;?—;(120'.12 x 1”12) . (38)

Nesta tltima expressiio dB, é o campo magnético gerado pelo elemento Ldl,. Esta
expressdo para dB; é conhecida como lei de Biot-Savart (Biot e Savart, 1820 e 1821).
Esta expressio de forca foi primeiro apresentada por Grassmann em 1845 (Grassmia.ﬁn,
1845). |

Grassmann nunca teve uma educa¢io formal em fisica e matemadtica (estudou-como
eurso superior filologia e teologia). Durante toda a vida foi professor de mateméifica no
segundo grau e nunca chegou a lecionar numa universidade, embora sempre almejasse por
isso. Seu principal trabalho cientifico foi o desenvolvimento de uma élgebra generalizada
onde nio necessariamente valiam as propriedades comutativa e a de existéncia do inverso
na multiplicagdo. Publicou seus resultados num livro em 1844 {apenas um ano &epois_
da descoberta dos quatérnions por Hamilton), e numa segunda versio ampliada e
melhorada em 1862. E no seu primeiro livro que apareceu claramente pela primeira
vez os modernos produtos escalares e vetoriais. Em 1845 publicou sua lei de for¢a entre
elementos de corrente como sendo uma aplicacio importante de sua dlgebra generalizada.
Aparentemente Grassmann nunca realizou experiéncias em fisica, nem mesmo relacionadas
com eletrodindmica. Para estas e outras informagdes ver: (Crowe, 1985).

Biot e Savart anunciaram sua expressao para o campo magnético em 30 de outubro
de 1820. Obtiveram este resultado éstudando a interagio de um longo fio retilineo (com

corrente) com um ima permanente. Fizeram estas experiéncias motivados, assim como
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Ampére, pelo anincio da descoberta de Oersted, antncio este feito em 11 de setembro de
1820, por Arago, na Academia Francesa de Ciéncias (Whittaker, 1973, pégs. 81 a 88).

- Usando que

A’Ix (BxC8)=BA.-6)-C(4-B), (3.9)
pode-se colocar (3.7) e (3.8) na forma
PRG = -2 BRAL - dhyig - (@ F)dB) . (@0)
Trocando-se os indices 1 e 2, observando que 712 = —72;, e que A-B=F. A vem:

& FS = Ldi; x dBy = - Ldl, x [g—;(I,dﬁ x rsz)]

iz

P'vo III2
T in

[(d:', - diz)f1a — ((ﬂz ru)dll] # —d*Fg . @31

A primeira coisa que se pode observar nestas expressoes € que embora o primeiro termo
da forca satisfaca ao principio de aco e reaco e seja paralelo a £,2, 0 mesmo néo acontece
com o segundo termo que é paralelo a dl; ou a dl}. Este segundo termo ndo satisfaz ao
principio de acio e reagdo a nao ser em alguns casos bem particulares. Isto faz com que
ein muitos casos A2 FG # —d? F'S quando usamos a expressio da forga de Grassmann entre
elementos de corrente. Qu seja, quando se usam elementos de corrente ha casos em que a
expresséo de Grassmann néo satisfaz a0 principio de agéo e reagio nem mesmo na forma

fraca. Estamos aqui restringindo a analise ao caso de elementos de corrente, contudo mais

para frente discutiremos o caso de circuitos fechados.
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3.3 - Derivacio da Forca de Grassmann a partir da Forga de Lorentz

Nesta segdo vamos mostrar como se chega em (3.7) usando a forca de Lorentz (1.32).
Novamente o caminho histérico foi o inverso jJa que Lorentz conhecia a for¢a de Grassmann
e partiu dela fazendo a substituicio g7 por Idl para chegar na componente magnética de
sua forga (Lorentz, 1915, pdgs. 14 e 15); (O'Rahilly, 1965, p. 561). _

Assim como no caso de Weber e do exercicio 3.1 supomos que nos dois elemenios ae
corrente hajam cargas positivas e negativas dg;4, dgi—, dgz4+ e dga—. Vamos supor que
o elemento de corrente L di, gere um campo elétrico dE, (caso ele ndo seja neutro) e um
campo magnético dB;. Somando as forcas (1.32) sobre as cargas positivas e negativas de

I, dl} vem:

& Fyy = (dg1s + dg1_)dE, + (di4Tr4 + dg1—81-) x dB . (3.12)

Impondo a neutralidade elétrica dos elementos de corrente (dgy~ = —dg1+ e dga_ = —dgay.)
vem que o primeiro termo de (3.12) se anula ja que dgi4 + dg;— = 0 ¢ também dE; = 0.
Usando (3.3) se chega entdo em (3.7), CQD. Para se chegar em (3.10) é necessario ainda
algo como a lei de Biot-Savart (3.8) relacionando a corrente nas fontes com os campos
magnéticos que elas geram. Ver ainda o exercicio 3.3.

Uma outra dedugéo da forga de Grassmann a partir da for¢a de Lorentz usando .os

potenciais retardados de Lienard-Wiechert se encontra no capitulo 5.
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3.4 - Ampére contra Grassmann

Nesta se¢iio vamos comparar as leis de forga entre elementos de corrente obtidas por
Ampére e Grassmann, e discutir alguns experimentos recentes que tém sido realizados para
se tentar distinguir entre as duas leis. | ' e

O primeiro aspecto a ser salientado, e que jé foi comentado anteﬁormente, é que a
forca de Ampére (3.1) sempre satisfaz i terceira lei de Newton (agéo e reagho), e ainda por
cima na forma forte. J4 a lei de Grassmann nfo satisfaz em geral a0 principio de aghio'e
reagiio nem mesmo na forma fraca. Um exemplo disto é o caso apresentado na figura 3.1

(ver exercicio 3.4):

—
Fi.2 ' . —t
— ——— T I.ZdRZ
Figura 3.1
Pela forga de Ampere temos
IRy =dF4=0. (3.13)
Jé por Grassmann vem que
$FS = -f‘-"- %{Ed!, dl £0, (3.14)
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$PFG=0. (3.15)

Isto é, de acordo com a lei de Grassmann o elemento Ildf; néo fard forca em I,di;,
enquanto que Igdf; fara uma forca néo nula em I, df; .

Apesar de alguns livros didéticos apresentarem este exemplo, é usualmente argumen- -
tado que elementos de corrente nio existem e que na realidade temos apenas correntes
fechadas, quando entéo também Grassmann satisfaria ao principio de acao e reagdo. Como
veremos no decorrer desta secéo, a situagio real pode néo ser bem assim. Antes de chegar
neste ponto vamos discutir um fato importante que mostra porque por muito tempo se
pensou serem indistinguiveis as duas leis.

Este fato pode ser expresso assim: A for¢a de um circuito fechado num elemento de
corrente de um outro circuito é a mesma quando calculada pela forga de Ampére ou por
Grassmann. Uma prova deste fato marcante se encontra em: (Tricker, 1965, pags. 55 a
58). Uma outra prova, usando propriedades mais avan¢adas do célculo vetorial, se encontra
delineada no exercicio 3.7. A razéo principal deste fato é que se fizermos a diferen¢a entre
(3.1) e (3.10) obtemos como resultado uma diferencial exata cuja integral ao longo de todo
o circuito fechado 2 é nula.

Seguem abaixo alguns teoremas (ver exercicio 3.5) e resultados importantes utilizados:

no exercicio 3.7:

1 1 fy
Viz ==V —= 7 (3.16)
V] X f1p = Vg X f12 =0 ' (3.17)
L dh, . = #
Valfiz  dh) = —— + (F1z - dly)—> , (3.18)
ri2 12
Y |
Vi(f1p - dl) = =2 — (fyp - dly) 2, (3.19)
riz T2
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V1 (F1a - dl,)... & --(r12 d:l)'"”

Foollms =) Vidhe + (=) Vidly + (1 - 2)Vadhs], (320)
Va(fi2 - 6"2) = "i + (13 - d’z)rm

_'r:_z[(x, — 22)Vadlo: + (1 = v2)Vadlyy + (21 — 22)Vodhd] , (3-2i)

Vi(dly - dly) = dip, Vadly, + dlayVidlyy + dla, Vidly, (3.22)

Va(dh - dfy) = dly Vadly, + disy Vsdl, + dh:Vodiys . | (3:29)

Embora possa parecer que V d11 z = 0, 1sto nge é sempre verdade Por exemplo,
'va.mos supor uma esplra circular de rtuo R= (a: + yz)‘/ ? centrada na origem e na qual

c:rcula uma corrente no sentido anti-horério. Logo, usando. coordenadas polares,

dl, = (Rd6)d; = Rdb(g cosb, — & sin §)

. -1 -". 1 o~
= Rdf ;
((w Y R e N/ y)

= —d8(y, § - 2:§) = &dly; + §dby . - (3.24)
Com (1.17) vem:
Vydly, = -de( g:—i + %) d9( I _p#0. (3.25)
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Esta semelhangi; das duas forgas neste caso (forca de um circuito fechado sobre um
elemento de um outro circuito) fez com que muitos pensassem que ambas as forcas sempre
dessem o mesmo resultado. Aliand&se a isto o fato de a forca de Grassmann ser muitas
vezes mais facil de integrar do que a de Ampére fez com que ao longo do tempo a forga de
Ampére fosse sendo deixada de lado em favor da de Grassmann. Cremos que outro motivo
para a forca de Ampére ter sido deixada de lado é que a teoria da relatividade restrita
¢ baseada no conjunto das equagdes de Maxwell mais a forga de Lorentz. Acontece gue
Grassmann é compativel com a for¢a de Lorentz (basta substituir I dly por ¢;7, em (3.7)),
enquanto que a for¢a de Ampére nio o é. Devido ao sucesso e popularidade da relatividade
restrita, tudo aquilo que ndo fosse compativel com a forca de Lorentz foi abandonado.
Sé que nos ultimos anos as leis de Ampére e de Weber tém voltado a ser consideradas
seriamente por motivos experimentais que indicamos a seguir. Antes de prosseguir vale
lembrar que o préprio Maxwell ndo apenas conhecia a forga de Grassmann, mas preferia a
forca de Ampére & de Grassmann. Por exemplo, no artigo 527 de sua obra maxima Maxwell
afirma, depois de citar as forcas de Grassmann e Ampére, que “a forca de Ampére é sem
duvida a melhor, pois ela € a dnica que faz as forgas sobre os dois elementos ndo apenas
iguais e opostas mas ao longo da linha reta que os une.” Isto é, Maxwell preféﬁa a fprga
de Ampére por ela sempre seguir a forma forte da lei de agéo e reacio de Neivto_n_." Ver:.
(Maxwell, 1954, artigo 527, pag. 174). I

Voltando agora a distingdo entre as duas for¢as. O resultado de que a for¢a de um
circuito sobre um elemento é a mesma por Ampeére ¢ por Grassmann vale se o circuito for
fechado e se o elemento de corrente que sente a forga nio fizer parte deste mesmo circuito.
Caso estejamos calculando a for¢a do restante do circuito numa parte dele mesmo entio
este resultado pode deixar de ser valido. O ponto principal é que isto também pode ser
realizado na prética, ou seja, pode-se detectar ¢ medir a forca em parte de um circuito
devido ao restante dele mesmo. A técnica experimenta)l utilizada é ligar as duas partes de

um mesmo circuito sélido metalico por mercirio liquido, como indicado nas figuras abaixo
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a) Ao-/\/LQC

Figura 3.2

Na figura (A) temos merciirio liquido nas regides A e C, e a parte do circuito ABC é
livre para mover-se na horizontal e na vertical quando flui a corrente I. Com isto caso o
restante do circuito CDEA faga uma forga resultante sobre ABC), esta pode em principio
ser detectada e medida. A vantagem do merciirio liquido é que como ele é condutor pode-se
estudar o mpvimento e a for¢a sobre a parte ABC sem interromper a corrente. Na figura
{B) temos uma representagio da famosa ponte de Ampére. A ponte BCDEF move-se
para a frente quando passa corrente no circuito, deslizando livremente sobre o merciirio
das duas tinas. Ampére bolou este experimento para comprovar g existéncia das forcas
longitudinais previstas por sua forga.

O préximo aspecto que vamos discutir aqui é uma outra situagdo do tipo da figura

3.1, isto €, a forga entre dois elementos de corrente paralelos e colineares:

L8

— T N —— ——
Figura 3.3
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Usando (3.1) a (3.11) obtemos (ver exercicio 3.4):

L diydl, | L
LFA = i-‘:‘;.-r,rz = 241y = ~d?FA | (3.26)
12
&*FS =0=d&F§. (3.27)

Neste caso particular vemos que Grassmann satisfaz ao principio de acao e reacéo nio
prevendo nenhuma for¢a de um elemento sobre o outro. Por outro lado Ampére também
satisfaz ao princfpio de ago e reagiio mas prevé uma forga de répulsﬁn entre os elementos
de corrente. E é usando exatamente este fato que tém sido realizados recentemente uma
série de experiéncias com circuito iinico (j& vimos anteriormente que Ampére e Grassmann
sdo indistinguivels quando se trata da interacdo entre dois circuitos fechados) para se
tentar distinguir experimentalmente entre as duas for¢as. Todos os experimentos de que
temos noticia confirmam a repulsio prévista por Ampeére em (3.26). Estes experimentos
tratam da propulséo a jato em liquidos (Graneau, 1982 a); dos aceleradores de projéteis

.(ra.ilglm accelerators), {Graneau, 1982 b, 1985 a, 1986, 1987 a, 1987 b); do fenémeno de
explosao de ﬁos_(Graneaﬁ 1983, 1984, 1985 b e 1987 c), (Nasilowski, 1985), (Aspden, 1987);
das explosdes eletrodinamicas em liquidos (Graneau ¢ Graneau, 1985), (Azevedo e outros,
1986), (Aspden, 1986); e do péndulo de impulso eletromagnético (Pappas, 1983), (Graneau
e Graneau, 1986), (Pappas e Moyssides, 1985), (Moyssides e Pappas, 1986).

Por exemplo, nos experimentos de exploséo de fios passa-se uma alta corrente num
fio metalico usual e observa-se que este fio se rompe em vérios pedacos. Este fendmeno
j era observado hd muito tempo mas pensava-se que os rompimentos eram devidos ao
derretimento do fio em algumas partes devido ao efeito Joule. Foi entéo que se fez uma
fotografia com microscépic; eletrénico das partes fragmentadas e se observou que os fios
eram rompidos no estado sélido por caracteristicas de tragio e nao de fusio (Graneau,
1983). A tnica explicagio para estes fatos, compativel com os dados experimentais, tem
sido baseada na forga de repulsiio de Ampére, (3.1) e (3.26). |

Contudo deve ser enfatizado que a controvérsia Ampére contra Grassmann ainda

é uma questdo em aberto e muita discussio baseada em argumentos mateméticos
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e experimentos fisicos estd ocorrendo na literatura. Alguns exemplos relevantes:
(Christodoulides, 1987), (Strnad, 1989), (Cormnille, 1989), (Whitney, 1988), (Rambaut e
Vigier, 1990), (Moyssides, 1989 a, b, c), (Phipps, 1986; € 1990 a), (Phipps ¢ Phipps, 1990),

.(Gra.neau, 1989 a, b), (Graneau, Thompson e Morrill, 1990), (Wesley, 1987 a, b; 1990 a,
b; e 1991, Capitulo 6).

Em geral trabalhamos com correntes filiformes, mas &s vezes também ocorre de termos
corrente elétrica fluindo sobre uma superficie ou por sobre um certo volume, € ndo apenas
por uma linha. Sendo ¢ a densidade superficial de carga (carga por unidade de drea)e p a
densidade volumétrica de carga vem que todos os resultados anteriores podem ser mantidos
substituindo Jdl por Kda ou por JdV, onde K é a densidade superficial de corrente e J a
densidade volumétrica de corrente. Em particular temos, no caso de elementos de corrente

neutros eletricamente (i =1, 2ej =2, 1)
Rida; = 04y day(Fiy — ) (3.28)

JdV; = pirdVi(@ig — ;=) - - (329)

Ja as forgas entre os elementos de corrente de Ampére e de Grassmann ficam nas

formas

dFper = L f——:—;j[z_(f?.- Rj—8(fi; - R) (7ij - R)ldaiday ,  (3.30)
" —43:; %[(I?,- - f?j)ﬁ':"‘— (fij « Bi)R,\daida; , (3.31)
SR = —be DR Ty =6 T G- TMvaV; (82
BFG = B (5 Fyyis - (- FOTNave av; (3.33)

i
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Concluindo esta se¢io vamos ressaltar uma vez mais (Tricker, 1965, pigs. 55 a 58; e
o exercicio 3.7 desta seg@o) que a partir da forga de Ampere (3.1) se deriva que a forca

de um circuito fechado C; sobre um elemento de corrente I;dl; é dada por

-OA _ p -

dFp o =hdlx B, (3.34)
5= b 7ok 12 |
B = i s Iadls % r¥2 - (3.35)

A forca de Ampére (3.1) veio como um resultado experimental de suas pesquisas,. €
para chegar em (3.34) e (3.35) foram usadas apenas manipulagbes mateméticas a partir
de (3.1). Logo nio é necessério postular inicialmente um campo magnético como o de
Biot-Savart (3.8) j& que o resultado acima foi derivado de (3.1). Para refor¢ar este ponto
vale lembrar que um dos resultados experimentais obtidos por Ampére para chegar em
(3.1) é o de que “a forga de um circuito fechado de forma arbitraria exercida sobre um
elemento de corrente de um outro circuito é perpendicular a este elemento” (Ampére,
1825), (Whittaker, 1973, pdgs. 83-87), (Maxwell, 1954, Vol. 2, Cap. 2, pigs. 161-2). Eo
produto vetorial em (3.34) indica exatamente isto, j4 que um vetor ¢ oi),tido por C=AxB
é ortogonal tanto a A quanto a B.
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3.5 - Derivagao da Lei Circuital de Ampére e da Lei de Nao Existéncia de

| Monopdlos Magnéticos

Nesta segéio vamos tratar da derivagio da lei circuital de Ampére. E assim que se
chama a equagio (1.49), a8 vezes sem o termo em d®g/dt. Vamos também derivar outra
das equacGes de Maxwell, isto &, a lei de néio existéncia de monopdlos magnéticos. Para
derivar estas duas leis vamos seguir o procedimento do Jackson (Jackson, 1975, Se¢éo 5.3).

Como j& vimos na se¢io 1.4 (ver também exercicio 1.3) esta lei circuital de Ampére
{1.49) pode ser derivada diretamente de (1.42). Vamos entéo nos concentrar na derivagio
desta lei e da (1.43) a partir da for¢a entre elementos de corrente. O principal resultado
a que Ampére chegou em suas extensas e precisas pesquisas experimentais, aquilo Que é
realmente a lei de Ampere, € sua lei de forca entre elementos de corrente dada por (3.1).
Tudo o mais que ele fez foi a partir desta lei. Veremos que se pode derivar (1.42) e (1.43) a
partir desta lei desde que se assuma também a equagdo de continuidade de cargas, (1.45).

Na formulagio de Maxwell hd apenas correntes fechadas (imés interagindo com
imas, imas interagindo com correntes fechadas, correntes fechadas interagindo com outras
correntes fechadas, etc.} Nos restringindo entéo ao campo magnético gerado ﬁor correntes
fechadas, podemos usar tanto (3.1) quanto (3.34) e (3.35); ou entdo (3.7) e (3.8), ou (3.10)
para.a forga deste circuito fechado num elemento de corrente de um outro circuito ja que
todas elas ddo o mesmo resultado (ver exercicio 3.7). Usaremos entéo (3.34) e (3.35) daqui
por diante.

Substituindo entdo Ldly por deg e integrando a expressdo do campo magnéiico
gerado pelo circuito 2 em todo o espaco podemos obter o campo magnético gerado no

ponto onde se encontra o elemento I d {ou J1dv, ) como sendo dado por

—r — - & 2 e F’_la
B, =t / / / T, )% Bedva (3.36)

Nesta expressio deixamos J depender ndo s6 da posi¢ao no circuito mas também do
teinpo jé que queremos tratar do caso geral das intensidades das correntes podendo variar

explicitamente no tempo. Apesar disto vamos supor os circuitos fixos no espago de tal
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forma que 72, 1';'12 e ry2 nao dependam do tempo.
Lembrande do resultado (3.16), ver exercicio 3.5, vem que pode-se escrever f12/r3,
como —V1(1/r1z). Como V; s atua na varidvel 1 este operador gradiente pode ser tirado

para fora da integral. Lembrando que

Vx(uG)=(Vu) x G+u(VxG), (3.37)
C?] b4 éz = —(-}'.2 X él ' . (3.38)

vem que

B, t) = f}r v, x ( / / / %ﬂdvz) . (3.39)

Aplicando o divergente em ambos os lados desta equagdo e usando (1.46) obtemos
a equacgio (1.43) da ndo existéncia de monopdlos magnéticos. Deve-se observar que para
chegar neste resultado néo foi necessario utilizar a equagéo de continuidade.

Na secdo 2.1 haviamos visto que com a lei de Weber se derivava a lei de Gauss,
primeira das equagdes de Maxwell. J4 vimos na segio 3.1 que com ela também se deriva a
forga de Ampére (3.1). Acabamos de ver que com a forga de Ampere se deriva a terceira
das equacgdes de Maxwell, isto é, a lei da néo existéncia de monopdlos magnéticos. Vamos
agora seguir esta linha de raciocinio para derivar a partir da forga de Ampére a segunda
das equacdes de Maxwell, isto é, a chamada lej circuital de Ampére. -

Aplicando agora o rotacional em ambos os lados desta equacio e usando que

Vx(VxG)=V(V-G) - V@G, (3.40)

obtem-se, ap6s introduzir novamente os operadores e lembrando que

V(@) =uV-G+G Vu, (3.41)
e com isto vem
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= o - 1
Vi % B(rl, t) = f—;vl (/[ J.' A\ ;;;de)

o [ [ [ oot L
be f j / Jea, OV Vs | (3.42)

Para resolver-se esta segundo integral tem-se de usar um outro resultado da andlise
vetorial, isto é:
1

V‘;’:l—z— = —4né(F — 72) , (3.43)

onde §(7; — 72) é conhecida como a fungdo delta de Dirac. Esta fungéo temassthﬁntes

propriedades, como j& vimos anteriormente:

6('.‘71 - 1—"2) =0 para 7_"] 7‘—' f-'.z ' (3.44)

] f /V, F(@2)5(7 — 72)dVe

= f(71) se ¥z contem 7},
(3.45)
=0 se V2 nao contem 77 .
Usando também (3.16) na primeira integral de (3.42) obtemos:
—d -o = o e JRN 1
Vi x B(ry, t) = poJ(f1, t) ~ %V;///J(rg, t)-Vg;-;;dVg : (3.46)

\
5

Sé falta agora obter a dltima integral. Usando novamente (3.41) obtemos, usando
também (1.39): |

[ 5o 1 I 1)
///J(fg, t)-Vg;;desz.(_Z:,l.daz

_ f / / Vs J(52, )V - (3.47)
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Lembrando que estamos integrando em todo o espago vem que & integral ae superficie
que aparece em (3.47) é feita no infinito. Supondo que o circuito 2 ¢ limitado no espa§o e
que néo se estende ao infinito, vem que esta integral é nula.

Usando agora a equagdo de continuidade (1.45) em (3.47), lembrando que J = o,
vem que (3.46) vai ficar na forma (8/0¢ pode sair para fora da integral pois néo atua em

r12, j& que é apenas uma derivada parcial):

VixB= p.,f— ——-v /// o2, t)dV ‘ I(3.4s$

De (1.16), substituindo-se a distribuicdo discreta de cargas por uma continua (g —

pdV, 3= — f [ [), vem que o potencial escalar elétrico de Poisson fica na forma:

#(r1, t) = 4—:; f ] [ p—(":‘;;—t)dvz : ' (3.49)

Jogando (3.49) em (3.48) obtem-se, lembrando da defini¢io do campo elétrico em
(1.18):

10F,., '
V] XB(T], t) —,U-OJ(T]_, t)+-—?——( 1, t) (3-50)

E esta é a equagdo (1.42) que querfamos derivar,

O fato que deve ser ressaltado nesta derivagéo ¢ que para se chegar em (1.42) foj
usado, além da lei de forca entre elementos de corrente, a equagéio de .continui"dade. pa.ra
cargas elétricas. Isto mostra que a lei circuital de Ampere pode ser derivada oy do campo
magnético de Biot-Savart ou da forca de Ampére na-fcI)_rma (3.34) e (3;35), desde que se
assuma também a equagio de conservagio de cargas. E i::‘nporta.'nte ressaltar que & corrente
de deslocamento, o termo em BE /8t em (3.50) ou (1.42), jé surge naturalmepte nesta
derivagio. E jd vimos no capitulo 1 como se chega na lei circuital de Ampére integrada,
(1.49), a partir desta forma diferencial.

como curiosidade histérica vale informar que mesmo a cbnhei:ida. “lei circuital de
Ampére,” isto &, (1.49) ou (1.42) sem o termo de corrente de deslocamento, nio foi obtida

pelo préprio Ampére, mas sim por Maxwell em 1856, 20 anos apés a morte de Ampére
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(ver Whittaker, 1973, Vol. 1, pags. 242 a 245). Como j4 ressaltamos mais de uma vez,
o principal resultado obtido por Ampére em suas experiéncias foi sua expressio para a
forga entre elementos de corrente (3.1). De qualquer forma parece justo chamar (1.49) de
lei circuital de “Ampére,” e nio de “Biot-Savart,” nem de “Grassmann,” j4 que Maxwell
sempre trabalhou com a forga de Ampére (3.1) e quase nunca com & de Grassmann, (3.7)
¢ (3.8), embora conhecesse a todas elas.

. Sobre Ampére, sua vida e sua obra, ver ainda: (Blondel, 1982; Tricker, 1962; e Caneva,
198_0). Para uma discussdo histérica do assunto deste capitulo e correlatos ver também:
(Thomson, 1885; e Arzeliés, 1972, pags. 198 a 209). '

. Recapitulando, no capitulo 2 haviamos visto que de Weber se chega em: Coulomb e
entdo a Gauss, a primeira das equacoes de Maxwell. Neste capitulo vimos que de Weber
se chega na for¢ca de Ampére entre elementos de corrente e que a partir desta forca se
chegam em outras equagoes de Maxwell: a lei circuital de Ampére e a lei de nfio existéncia
de monopdlos magnéticos. Para completar a prova da compatibilidade da forca de Weber
com as equagdes de Maxwell s6 falta derivar a partir de Weber a lei de indugdo de Faraday.

Este € o assunto do proximo capitulo.
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3.6 - Exercicios

3.1 - Neste exercicio vai-se derivar a forca de Ampére (31) a partir da forga de Weber.
Este exercicio estd baseado em (Assis, 1990 b). '

A forma mais ficil de fazé-lo é usando a forga de Weber na forma (2.4). Suponha
entéo cada elemento de corrente I;dl; como consistindo de cargas positivas e negativas,
com velocidades ¥;4 e T;_, e aceleragOes d;4 e @;_., respectivamente. Vamos supor circuitos
filiformes tal que as densidades lineares de carga sejam dadas por A4, Aj—, Azq € Ap_.
Isto significa que a quantidade de carga em cada elemento de corrente é dﬁa pordg 4+ =
Mdly, dgi. = A_dly, dgay = Aoydly e dga. = Ay_dly. Suponha também que eles
siio neutros eletricamente, isto é, dg;— = —dg4, ou A = —A;4. Como os elementos de
corrente tém tamanho infinitesimal vem: 734 = r;_ = ;.

(A) Obtenha a forca do elemento 2 no elemento 1 somando as quatro componentes da

forca:

dzfm = d2F2+, 14 +d"’ﬁ"2+, 1- +d2ﬁ2-—, 1+ +d2F2-, 1— .

Observe que no resultado final a parte Coulombiana e a parte de aceléragﬁo em (2.4) vao
& zero. |

(B) Finalmente utilize (3.3) e (3.4) para colocar o resultado da parte (A) na forma da
equagdo (3.1). | '

3.2 - Agora vamos obter a energia potencial entre dois elementos de corrente de acordo
com & lei de Weber.

(A) Suponha as mesmas coisas que no exercicio 3.1.

{B) Obtenha a energia potencial entre dois elementos de corrente eletricamente neutros

a partir de (2.9), adicionando as contribui¢bes dos grupos de cargas:

U =d?Upy, 14 +d? Uy, 1- + d?Us 14 +dPUs_ - .

(C) Utilize (3.3) e (3.4) no resultado anterior para colocd-lo na forma (3.6).
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3.3 - Neste exercicio vai-se demva.r a for¢a de Grassmann (3.7) a partir da forca de
Lorentz (1 32).
. (A) Suponha as mesmas coisas que no exercicio 3.1.
(B) Obtenha a forga do elemento 2 no elemento 1 somando as quatro componentes da
for¢a, como no exercicio 3.1, mas agora usando (1.32) em vez da forga de Weber.

(C) Use (3.3) para colocar este resultado na forma da forga de Grassmann (3.7).

3.4 - (A) Use as expressdes (3.1) e (3.10) para calcular a for¢a exercida pelo elémento
I,dl; no elemento I dl; usando Ampére ¢ Grassmann na situa¢io mostrada na figura 3.1.
Em seguida use (3.2) e (3.11) para calcular a forca de Idi; em Idl, e confirme que
enquanto para Ampére vale o principio de acio e reagdo, 0 mesmo j& nio ocorre com
Gra.ssma.nn |

(B) Replta o procedimento anterior no caso da figura 3.3. Nesta situagéio apesar de
haver agao e reagao tanto para Ampére quantg para Grassma.nn, vai haver uma repulsao
entre os elementos de corrente de acordo com Ampére, e nenhuma repulséo ou atragao de

acordo com Grassmann.
3.5 - Prove usando componentes retangulares Cartesianas as relagées (3.16) a (3.23).

3.6 - Uma fungéo que vai ser usada no proximo exercicio e no capitulo 4 ¢ dada por’

" (F12 - dh) (Fiz - )
s T12

G=

{A) Use o teorema de Stokes, (1.40), e as relagdes .(3.37) e (3.17) para colocar G na

forma

o= | [{[o: () o}

~ (B) Use V(fg) = fVg+ gV, arelagio (3.18) e o fato de 12 X 12 =0, para, mostrai

que
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oo (6 x1p) 4

- (C) Use a segunda igualdade de (3.16), (3.37) e novamente o teorema de stokes (1.40)

~ para mostrar finalmente que
G § d-dh
' Ca r12
{D) Mostre que
g § Gaa-dh) (o - dia) =f di; - di;
¢y r12 c, T12

3.7 - O objetivo deste exercicio é mostrar que a for¢a de um circuito fechado sobre .
um elemento de corrente de um outro circuito é a mesma quando calculada pela forca de
Ampere ou pela de Grassmann.

Apés integrar no circuito 2, as equacdes (3.1) e (3.10) podem ser escritas como

A P“O - -
ch’ em Idh 51113(2}11 - 34,),
G _ Mo - -
dﬁcz em Iidly — “2;1112(441 - 43),

onde
7'12
Al f (dh dlg)

A, -—f (F12 - dh) (F1z - C“z)r12 ,
Xs Ef (f‘]g dll dlg .
e ]y
(A) Usando (3.16), o fato de que V(fg) = fVg + gV {, e as relagdes (3.19) ¢ (3.20)

mostre que .&‘2 pode ser expressa como (lembre-se que como V) 86 atua na varidvel 1 ele

pode sair da integral §, ):
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. i L.
A =-— 1[ ("12 d 1) ("12 C”z) 2k, + A
c: riz

s dL | o S
+f gﬁi—,-——ﬂ [(-"?1 —23)Vidlie + (11 — y2)Vadhy + (21 - 32)Vld’l=]
_c: 12 L -

+ f (2 dlz)dll.
Cy r'1"«’

(B) Use o fato de dh poder sair para fora da iiltima integral, mais o teorema de Stokes

SRRt

e as relagdes (3.16) e (1.47) para mostrar que a ltima integral do lado direito da expressao
acima ¢ nula.

(C) Use o exercicio 3.5 e aplique novamente V; em G para mostrar que (usando (3.32))

V.G = —4, +f _[dzzzv,dzu + dlayVidhy + dl2, Vi dly] .
T

(D) Jogue os resultados das letras (B) e (C) na letra (A) para mostrar que

34 = A, + Az + A,

onde

A, fc "'1—{ (fr2- dE)M - dl2x] Vidls + [(":12 'dﬂ)%‘w

s Ti2 ri2

~ dlyy | Vadlyy, + [(f,, -drg)gf‘_:—z*l - d:,,] V,d!lz} .
- ]2 d

(E) Lembrando que tudo que tem a ver apenas com a varidvel 1 pode sair para fora

da integral sobre C; vem que a primeira integral de A4 pode ser escrita como

(V1dlys) f .-_[(:-12 dly) (Frz - &) — (dTy - £)] .
Use o teorema de Stokes (1.40) e as relagoes (3.37), (3.38), (3. 16) (3. 17) e os fatos de

que Vy; x & =0, #13 X f12 = 0, Vo(F12+ £) = [~2 + (f12 - £)F12] /712, para mostrar que esta

integral é nula.
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(F) Mostre que as outras duas integrais de A também sio nulas, para concluir que
(G) Jogue o resultado da letra (F) na letra (D) para concluir que sio iguais as forgas de
 Ampére e Grassmann de um circuito fechado sobre um elemento de corrente de um outro
circuito. Isto é um resultado de 34, = Al + A;, de tal forma. que. 24, -34, = A; — As
Isto significa que

Izdlg X ru)

aa
df-'Czﬂ ein I;‘ra = dﬁg em’ Iul!' = Ildll . (4 C; 12,
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4) Lei de Indugao de Faraday

4.1 - Lei de Faraday

Usualmente se produz corrente elétrica através de uma voltagem ou- diferenca-de
potencial estrostatica, como quando ligamos os terminais de uma pilha ou bateria. por
um condutor metdlico. Uma outra maneira de gerar corrente elétrica completamente
independente da anterior foi descoberta em 1831 por Michael Faraday (1791 - 1867). Este
€ o assunto deste capitulo.

Faraday nunca teve uma educagido formal em ciéncia e sempre foi um autodidata.
Chegou a assistir a algumas palestras piblicas do quimico e fisico ingiés Humphry Davy
(1778 - 1820) e mos 21 anos passou a ser assistente dg Davy no laboratério de quimica
da Royal Institution (Londres). Foi ai que ele trabalhoy a vida inteira. A partir da
morte de Davy se tornou o diretor do laboratério. Faraday sempre foi essencialmente
um quimico e fisico experimental, e seus conhecimentos matematicos sempre foram muito
restritos. Faraday sempre fol muito influenciado por Davy e durante uns 10 anos se ocupou
principalmente de quimica (eletrdlise, decomposigéic de elementos, etc.) Foi a partir de
1820, em seguida & descoberta fundamental de Qersted, que passou a se dedicar mais ao
eletromagnetismo.

A inspiragio para suas pesquisas experimentais foi a tentativa de encontrar fendmenos
na eletrodindmica anilogos ac que ocorre na eletrostatica. Sabia que quando se aproxima
uma carga elétrica de um condutor neutro {por exemplo, um metal), & carga induz uma
carga oposta no lado do condutor mais préximo da. carga (ver figura 4.1):

o) b)

+Q

Condutor neutro Polarizagdo ou

indugdo de cargas

Figura 4.1
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Sua idéia inicial foi a de que se mantivesse uma corrente elétrica préxima de um outro
fio fechado ou chapa metdlica, a primeira corrente poderia induzir uma corrente elétrica
nestes corpos vizinhos, e esta corrente induzida permaneceria enquanto houvesse corrente
no primeiro circuito. Viu experimentalmente que esta idéia néo funcionava mas fez a grande
descoberta em 1831 de que uma corrente era induzida no circuito secundario desde que
variasse a corrente no circuito primario. Em seguida observou que mesmo que houvesse
uma corrente constante no circuito primirio, podia induzir uma corrente no secundério
desde que houvesse um movimento relativo entre os dois circuitos. Também se a drea de
um dos circuitos fosse alterada seria gerada uma corrente enquanto estivesse havendo a

variagao da area. Estes trés casos estio representados na figura 4.2.

o ¢ R o <
o
i - @
o@& C4 o?:')sn ’
v '
| _ )
d

Ty e Y =

o s o A5

Figura 4.2: Indugéo de correntes
(A) Variagio de intensidade da corrente no circuito primario,
(B) Imé permanente se aproximando de um circuito,
(C) Circuito se aproximando de um ima,
(D) Variagéo da 4rea de um circuito numa regido de campo magnético.
Na figura (A) os circuitos estdo em planos paralelos. Nas figuras (B) a (D) o eixo

norte-sul do im& é normal ao plano do circuito secundario.
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Faraday expressou seus resultados dizendo que a corrente induzida I; é devida a uma
forga eletromotriz induzida, fem,,, e esta fem;; surge quando ha uma variagao do fluxo
magnético sobre & drea do circuito secundério onde esté ocorrendo a inducdo. Lembrar que
a fem, embora seja chamﬁda. de forga, é uma voltagem néo eletrostdtica cuja dimensao é o
volt (1V = lkgm?C~1s-?). Por analogia com a lei de Ohm (I = V/R) podemos escrever

a lei de F araday (quando ndo ha baterias ligadas ao circuito) na forma

=% ‘Z’:" , (4.1)
d
femz = —-—®5, (4.2)

<:>Bsf /E-da'z. (4.3)
Sa

Em (4.2) o sinal de menos foi colocado para deixar esta lei compativel com a descoberta
de Lenz de 1834, que tem a ver com o sentido da corrente induzida, coisa que Faraday néo
havia determinado. A lei de Lenz afirma que quando se varia o fluxo magnético sobre um
circuito a corrente induzida nele é em direcéo tal que a forca resultante sobre ele tende a
se opor & variagio do fluxo. Por exemplo, suponhamos que haja uma espira circular de
raio r centrada na origem, sobre o plano XY, sem correhte. Caso um im& permanente
localizado sobre o eixo Z, na regido z > 0, com o pélo norte para baixo e o pdlo sul para
cima comece & se aproximar da espira, g corrente induzida serd na diregdo anti-horéria.
Isto é, é como se a espira se transformasse num pequeno imé com o pélo norte para cima
tal que tende a repelir o ima permanente que esté se aproximando dela. Pode-se dizer que
a lei de Lenz exprime o fato de no caso da indugdo ;:le correntes a natureza se comporta
de maneira a evitar instabilidades (no exemplo acima caso a corrente induzida. fosse no
sentido hordrio haveria uma atragio entre o imé e a espira, o que se conﬁgurarih;' como
uma situacio instével ji que qualquer perturbagio na posigio do fmé tenderia a crescer

ixideﬁiﬁdamente).
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4.2 - Franz Neuman

Além de Faraday e Lenz, outra pessoa importante na lei de indugio é Neumann. Ele
foi o primeiro a matematizar a lei de Faraday. O objetivo de Neumann era deduzir a lei
de Faraday (4.1) a (4.3) partindo da forca de Ampére (3.1). Foi durante suas pesquisas
que introduziu o potencial vetor magnético A definido por (Neumann, 1845 e 1848 a, b):
A) = £ I dhy (4.4)

Este é o potencial vetor no ponto 72 devido ao circuito C;. Aplicando o rotacional V3 x
em ambos os lados de (4.4) se obtem (usando (3.37), (3.16) e lembrando que o operador

V, s6 atua nas varidveis 2 e portanto pode entrar em fc, e nio atua em I dl; )

Vox A=t § T2 pan (4.5)
4 ¢ Ti2

Mas este é justamente o campo magnético devido ao circuito 1 ((3.35) trocando os

indices 1 e 2, e lembrando que 73; = —712), isto é,

.g(f-“z) = Vz x JI ’ (4.6)

com A dado por (4.4). Aplicando este resultado em (4.2) e usando o teorema de Stokes
(1.40) vem que pode-se escrever a lei de Faraday (4.1) com a fem;; dada na forma (ver
exercicio 4.1); |

d d

- 6A. -
femu == _C_ECA _-(;E A * dIz = ca(""a) * (ﬂz . (4.7)

Isto é, Neumann conseguiu expressar a lei de indugiio sem precisar falar no campo
magnético, e para isto usando apenas seu potencial vetor 4, dado por (4.4).

Neumann também introduziu aquilo que se chama de coeficiente de indutéincia miitua,
M, dado por

o dl; - di -
M= # f f 1 * G2 . (4.8)
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‘Este coeficiente é indeperidente 'di intensidade das correntes I; e Iz, ‘e ‘portanto &
apenas um fator geométrico que relaciona os- dois circuitos. ‘Coni istb “veth que ‘a’lei de

indugéio também pode ser expressa na forma {ver exercicio 4.2):

_ feml‘zl" | ‘
b= Ry fo e e f49)
femiz = ;%(I;M) : (4.10)

* H4 ainda ums outra maneira de ver a lei de indugéo. Um dipolo elétrico é constituido
por duas cargas de mesma magnitude mas de sinais opostos separadas pela distindla 1 6

*
heodlot

momento de dipolo elétrico é definido por:

n

F=d, SN R b))
onde ¢ € a carga positiva e I'é o vetor que aponta da carga negativa para a positiva, e
cujo médulo é a distincia entre as duas. A energia potencial deste dipolo puma regido de
campo elétrico E (isto é, a energia gasta para trazer este dipolo lentamente do infinito até
este ponto sem alterar a distancia I, e supondo que & niio dependa dotempo) é dada por

W=-pE, | (4.12)

Em ahﬁlogia com tudo isto vem que se pode'deﬁnir o momento ﬁlagnéticb de vins
pequena espira de drea a e corrente I como ‘ ‘ > -
m=lad, - (4.13)

onde @ é o vetor unitirio perpendicular a drea a ¢ apontanda de acordo com a regra da
mio direita. A energia potencial deste dipolo numa regifio onde ha wn campo magnético
ﬁ (isto é, a energia gasta para trazer este dipolo lentamente do infinito até esta regido

supondo que B nio depende do tempo e que I e a permanecem constantes) é dada por

W=-m 8. (4.14)
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No caso de um circuito macroscépico C; na presenca de um campo magnético B yem

a0 se generalizar o resultado anterior que sua energia potencial é dada por

W= -I / f B-di,=-LELM. (4.15)
5y

Isto leva a que a for¢a eletromotriz induzida seja dada por

femyp = %(r—“:) . (4.16)

Em (4.15) W pode ser visto como o trabalho que tem de ser feito contra a forga
entre os dois circuitos C; e C; para separd-los a uma distancia infinita, supondo que as
intensidades das correntes permanecam constantes. |

Antes de prosseguir vale lembrar que de acordo com a lei de Ohm vem que a fem é

uma voltagem e portanto ¢é igual a § E . dl. Usando este resultado em (4.2) e (4.3) vem:

fema=§ Bodi= [ [ (-%ﬁi)-daz : (417)
Cy Sy

Do teorema de Stokes (1.40) vem entéo

VxE'=-%3, | (4.18)
que € a lei de Faraday na forma diferencial (1.44). Comparando ainda (4.17) com (4.7) vé-
se que a componente do campo elétrico responsdvel pela lei de indugéo néo € a componente

de Poisson, mas sim —90A4/dt (ver exercicio 1.8).
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4.3 - Derivagao da Lei de Faraday a partir da Forga de Weber

Agora que ja detalhamos alguns aspectos da lei de indugéio, vamos deduzi-la partindo
da lei de Weber. Ha varios procedimentos para isto, cada um deles com suas peculiaridades
e caracteristicas préprias, e como exemplo citamos: (Whittaker, 1973, Vol. 1, Cap. 7),
(O'Rahilly, 1965, Vol. 2, Cap. 11), (Wesley, 1987 b; 1990 a, b; e 1991, Cap. 6), (Maxwell,
1954, Vol. 2, Cap. 23). Vamos seguir mais de perto o procedimento de Maxwell nesta
deducdo. |

Inicialmente citamos as palavras de Maxwell:

“Apds deduzir da féormula de Ampéere para a agéo [forga] entre elementos de corrente,
sua prépria férmula para a acgao [forga] entre particulas elétricas que se movem, Weber
procedeu para aplicar sua férmula & explicagéio da producdo de correntes elétricas por
inducéo eletromagnética. Nisto ele foi eminentemente bem sucedido, e indicaremos' o
método pelo qual as leis de indugiio de correntes podem ser deduzidas da férmula de

Weber.” (Maxwell, 1954, artigo 856, pag. 486).

Queremos entdo calcular a for¢a eletromotriz induzida sobre o circuito 2 devido 3
. corrente no ‘circuito primdrio nas duas situagoes estudadas por Faraday: Quando o circuito
1 translada como um todo, se aproximando ou se afastando do circuito 2; e quando a
corrente no primario varia no tempo, I)(t). Apresentamos novamente a forga de Weber

exercida por dg; sobre dgq;, (2.4):

- dgydg, 7 1/, . 3,. . - -
| & Fyy = :;_632 ;_-% 1+E.;( 12 * V12 "'§(T12‘012)2+f13’012)] . _ (4.19)

" A forga eletromotriz, fem, é uma voltagem que gera uma corrente. Podemos pensar
numa voltagem como sendo devida a um campo elétrico. No caso de cargas livres no espaco
sabemos que as positivas vio do maior para o menor potencial, isto é, na mesma dire¢do
em que aponta o campo elétrico, enquanto que as negativas seguem em sentido contrério.
Caso isto ocorra entéo ambas contribuem com o aumento da corrente. No caso da corrente

induzida 86 nos interessa a componente da corrente paralela ao fio em cada ponto, isto
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é, a dfz. Juntando tudo isto e lembrando que estamos considerando cada elemento de
corrente como sendo neutro eletricamente, vem que a fem,; em dl; devido a di; é dada

por (Maxwell, 1954, Vol. 2, Cap. 23):

d* femy =

[(41?"',+, 24 + AR 34) ~ (dFiy, 2~ +dFY -, 2-)] .dly . (4.20)

2dgay

Dividimos as forgas por dgy4 para obter algo como um campo elétrico generalizado,

e o fator 2 vem pelo fato de estarmos considerando nas forcas as contribuigdes das cargas
positivas (dgz:4 ) e negativas {dg,_) simultaneamente.

Como ja afirmamos, queremos estudar néo s6 o caso em que a intensidade da corrente

no primério varia no tempo, mas também quando o circuito primario translada como um

todo. As velocidades das cargas positivas e negativas em cada elemento séo entdo dadas

por
dr; o
-'1+ = i+ = 1?1.|.d + vV ’ (4.21)
dt
dr - S
o= =5 a4V, (4.22)
“dt
o, dr; "
Va4 = d2t+ = Vi4d (4.23)
=+ d-. - —
B = Z =Tyq. (4.24)

Nestas expressGes V & a velocidade de translacéo do circuito 1 como um todo relativo
a0 circuito 2 {como medido num sistema de referéncia inercial), e ¢ sub-indice d significa
a velocidade da carga em relacéo ao fio, isto €, a velocidade de “drifting” ou de migragéo,
ou seja, a velocidade responsivel pela corrente elétrica.

Além disto vamos assumir a hipdtese de Fechner, isto &, §}..q = ~014¢ € P2 g = ~U244.
Esta hipétese era comum no século passado e foi usada tanto por Weber quanto por Maxwell

(lembrar que o elétron sé foi descoberto em 1897). Neste livro néo vamos tratar do caso
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mais geral e mais frequente que as velocidades ¥)4.4 € 714, assim como U244 € a4,
tém médulos diferentes, apesar de n&o impormos nenhuma relagéo entre ¥4 € ¥244.
Assumindo entdo a hipétese de Fechner e as relagdes (4.21) a (4.24) em (4.20) vem

(ver exercicio 4.3):

dgiy F1z-dly

d' femi = T 4me, 13,00

{2‘7 (Tr4d = P1-a) — 8(F12 - V)[F12 - (Frpa — 1-d)]

+ ;12 . ((-1.14. — 31_)} . l ) (425)

‘Seguindo Maxwell mais uma vez, vamos considerar todas as grandezas do mstema,
como ry2 por exemplo, como fungdes de apenas trés varidveis independentes: l;, Iz e t. Isto
é, I} é um comprimento medido sobre o circuito 1 a partir de uma certa origem arbitréria
pré-estabelecida, com sentido positivo ao longo da dire¢éio da corrente, 0 mesmo ocorrendo

com I; em relacao ao circuito 2, e ¢ é o tempo. Este procedimento é claramente correto e leva
a que, por exemplo, ry2 = riz(l, b, t) e driy = dly(Or12/0 )+ dly(Ory2/Bly)+di(Bry2 /6L).
De (33) ve1n, ¢om d¢11+ = A].}.C"]:

Ldl = dgy4 (814 — $1-) = dg14(F14¢ = T1-4) - (4.26)
Em geral quando se varia a intensidade da corrente num fio meté.lico o que muda é &

velocidade de migragio das cargas, mas nio o nimero ou densidade de portadores (eletrons

livres). Isto em (4.26) Ieva a que (ver exercicio 4.4);

dg14(Gry — d1-) = fa'g'tldfl (4.27)

Jogando (4.26) € (4.27) em (4.25) obtem-se, usando que ¢* = (u,&,)™!, € integrando

sobre os dois circuitos:
- I o o _ -
femlg = ﬁ f f ‘(‘ﬂl—f"i) [ZIl(V ¢ dl]) - 3!1(1112 . V)(Flg . tﬂl)
€1 /0, 12 : . )

o o |
+ f‘;z—a—:-(f'n-dh)] \ (4.28)
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Usando a regra da cadeia no dltimo termo vem que

{2I (‘7 dlz)(rn dlg) - 31, (f12 1.7’)(1-12 ;;ul)(,-12 dlz)
riz ri,

C, JC3

+% [I1 (Faz - dh)(Faz - dIZ)] - I (¢ dh) 8 ("12 dh)
ri2

ri12

.r——("“‘ d“)a(rl vd)+ Iy ('“'"'dr‘)(*"'dr”)a"“}.

L 2 . (4.29)

Usando que ((4.32) e (4.33) seguem do fato de os circuitos nfio girarem, apenas
transladarem, enquanto que {4.30) e (4.31) séo derivadas no exercicio 4.5):

8712

e v, (4:30)
22 oy 7, (431)
2 _y, | (4:32)
2 _y, - “39)

pode-se mostrar que (ver exercicio 4.6):

8. o V.di (2 -V)Fsa-dl}) :

— +dly) = - - s 4.34

ot (Faz-dh) riz riz ( )

%(Flz . dl‘;) — Vr' dlz - (1‘12 . V)(rlz . dlz) . (4.35)
12 ri12

Com estes valores em (4.29) se obtem

femyp =

—,u,,f f{ [ (f12 - dll)(ru dlg)] (V dll)(rlz dlz)
G Je;
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& ‘"2)‘;"2 -dh) } : (4.36)
Ti2 _

Lembrando que Il(l-" . dﬂ) pode sair para fora da integral em Cy pode-se mostrar que

a segunda integral é nula (ver exercicio 3.7, letra (B)). Da mesma maneira pode-se mostrar

que a terceira integral é nula fazendo“se.primeiro a integral em C;. De tal forma ficamos

com

_—hed (Fiz - iy )(F12 -de)]
femu = iz dt [I] 'il s 2 . ) (4.37)

Do exercicio 3.6 e da definigiio (4.8) vem finalmente que a partir da for¢a de Weber

se chéga na relagao

femia =~ S(LM) , (4.38)
que é exatamente uma das maneiras de se expressar a lei de Faraday, como vimos em
(4.10).

Também pode-se chegar num outro resultado interessante relacionado com a energia
potenicial e com a indugéo a partir da energia potencial generalizada de Weber (2.9).
Como vimos no capitulo 3, a energia potencial de dois elementos de co;'rente Ldly e Idl,

de acordo com (2.9) é dada por (ver exercicio 3.2):

(Fr2 - A3 Y(F1z - dlz)
ri12 "
Usando o exercicio 3.6 e a definigado 4.8 vem que a energia potencial total da interacéo

&U=tenn, (4.39)

entre dois circuitos C; e C; é dada por, de acordo com Weber:

N

U=LLM. (4.40)

E entao é ficil ver que também a partir da energia potencial de Weber se pode chegar na
lei de indugdo. |

Sugerimos fortemente a leitura dos livros de O'Rahilly, Maxwell e _Whittaker nas

paginas indicadas anteriormente para que seja feito um aprofundamento histdrico e critico

da lei de indugdo.
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4.4 - Exercicios

4.1 - Lei de indugéo. _

(A) Seja A definido por (4.4). Aplique o rotacional Vzx ambos o8 lados desta
equagio para encontrar que B(i3) = V; x A, ond'e ﬁ(f*’g) é dado por (3.35) trocando-se os
indices 1 ¢ 2.

(B) Use este resultado e o teorema de Stokes para mostrar que

Cu= ;f-df;=/ B.dd, = %p.
[ S,

(C) Conclua entéo que no caso em que néo ha baterias ligadas ao circuito, & lei de

induciio de Faraday pode ser expressa como

R, I, =—%U : ﬁ-d&z] =--3%[£ A‘.dz';] )
2 ?

4.2 - Coeficiente de indutdncia mutua.
{A) Seja M definido por (4.8). Use os resultados do exercicio anterior para mostrar

que

@B através de £3 = IIM .

(B) Comece tudo novamente para mostrar que

q::'B através de O = I2M .

(C) Use o resultado da leira (A) para colocar a lei de induéﬁo na forma {4.10).

4.3 - Use (4.19) e (4.24), juntamente com a hipotese de Fechner #;_ = —o;4, para
chegar em (4.25). Observe que mais uma vez o termo Coulombiano na forga de Weber niio

vai influenciar em nada na lei de indugdo (ver também exercicio 1.8).

4.4 - Aqui vamos derivar (4.27) a partir de (4.26).
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(A) Mostre que de (3.3) e (3.4) vem, lembrando que as velocidades das cargas sio
paralelas aos fios:

L= dig(vig —vi-); 1=1, 2,
(B) Como a variagdo da corrente em fios metédlicos muda apenas a velocidade de
migraciio das cargas mas néo suas densidades vem

dr, or
Air(aip —a;i) = "ﬁl‘ = ﬁ'l' ’

com o qual se chega em (4.27).
(C) Qutra maneira é considerando as varidveis como funcéo da posicho no fio e do
tempo.

Mostre entio de (4.26) que, supondo a consténcia das cargas:

d(dh)
dt

(D) Como a corrente é constante ao longo de todo o fio, vem que 86, /8 = 0, e

portanto dIy/dt = 8I, /6t. Por outro lado temos que naturalmente ol /8l = 0, embora

dI
dql.,.(aH - a] ) = dt(Ildll) = ldll Il

como vimos no capitulo 3 ndo necessariamente temos ol /Oz; = 0. Como a situagio
que estd sendo estudada é apenas a de translagio do circuito, sem rotagio, vem que

8(dl;)/8t = 0. Junte tudo isto para chegar entéio em (4.27).
4.5 - (A) Prove (4.30) usando que 12 é funcio de Iy, L e t.
(B) Prove (4.31) usando que ry; é fun¢do de 1, {2 et

(C) Prove (4.31) usando a letra (A) e o fata de que r12 = (712 - 712)/2.

4.6 - Prove (4.34) a (4.35) usando (4.30) a (4.33) ¢ a regra da cadeia para a derivada

de um produto escalar.

4.7 - Refaca toda a se¢io 4.3, de (4.19) até chegar em (4.38).
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5) Forgas de Weber e de Lorentz

5.1 - Introducao

Como vimos nos capitulos anteriores, a lei de Weber segue todos os principios de
conservacao da fisica cldssica: momento linear, momento angular e energia. Com ela se
deriva também a forga de Ampére entre elementos de corrente. Por 1ltimo vimos que
também se derivam a partir dela o conjunto das equagdes de Maxwell (lel de Gauss, lei
circuital de Ampgere, lei da auséncia de monopdlos magnéticos, € lei de indugéo de Faraday).
No caso particular da lei circuital de Ampére foi necessério, além da forca de Weber,
introduzir a equagéio de conservagio de cargas para se obter a corrente de deslocamento
de Maxwell. O inverso foi mostrado no exercicio 1.2, isto é, a partir das leis de Gauss
e Ampere, com corrente de deslocamento, pode-se derivar a equagdo de conservagio de
cargas. O importante a ser enfatizado aqui é que a for¢ca de Weber & completamente
compativel com as equaches de Maxwell.

Disto vem que a tnica diferenca da eletrodindmica de Weber em relagio ap
eletromagnetismo classico é na for¢a que atua sobre as cargas. Lembramos que isto nio &
fornecido pelas equagdes de Maxwell, que dio apenas os campos gerados_ pelas cargas
mas nio déo como as cargas sentem ou reagem & presenca de cpmpos externos. No
caso do eletromagnetismo cldssico isto é dado pela forca de Lorent.z, enquanto que na
eletrodindmica de Weber temos a prépria forca de Weber. |

Neste capitulo vamos comparar estas duas forcas.
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5.2 - Potenciais de Lienard-Wiechert

A maneira mais direta de comparar as duas expressSes de forca é obtida com o auxilio
dos potenciais de Lienard-Wiechert. Antes um pouco do contexto histérico. A idéia de que
a intera¢&o entre o8 carpos nio ¢ instanténea mas leva tempo para se propagar de um corpo
a0 outro é antiga. Mas no caso do eletromagyetismo o primeiro a expressé-la claramente
parece ter sido Gauss em 1845 numa carta enderecada a Weber (Whittaker, 1973, Vol.
1, pég. 240; Maxwell, 1954, Vol. 2, artigo 861, pég. 489; O'Rahilly, 1965, Vol. 1, pig.
226). Em 1858 Riemann (1826 - 1866), estudante, amigo e auxiliar de Weber e Gauss na
universidade de Gottingen, introduziu a idéia de tempo retardado na fisica. Esta consiste
em dizer que a forga sentida por uma carga g, localizada em 7} no tempo t devido a uma
outra carga ¢, depende da posicio, velocidade e aceleracio de ¢; no instante retardado
t—ryz2/c. Nesta expresséio ryz € a distdncia entre as duas cargas e ¢ é a velocidade com que
viaja a interagdo, que se assume como sendo a velocidade da luz. O trabalho de Riemann sé
foi publicado em 1867 (Riemann, 1867 e 1977), no mesmo ano em que Ludwig Lorenz (1829
- 1891), um fisico dinamarqués (nio confundir com o H. A. Lorentz da forga de Lorentz),
publicou um trabalho de certa forma equivalente onde desenvolveu independentemente a
idéia do tempo retardado (Lorenz, 1867). Pode-se entéo dizer que Riemann e Lorenz silo,
com justiga; os introdutores do tempo retardado na fisica.

Em 1867 o fisico aleméo Clausius (1822 - 1888) obteve uma lei de qugq. andloga & que
Lorentz introduziria vinte anos depois, e mostrou que com efa se podia derivar a for‘ga de
Grassmann (ver Clausius, 1880). Lorentz introduziu sua lei de forga entre 1892 e 1895,
e sua diferenca em relagio a Clausius é que na expresséo da forga ji incluia o tempo
retardado. Em 1898 A. Lienard deu um grande avango em relacéo 2o trabalho de Lorentz
ao trabalhar com os potenciais retardados devido & cargas discretas (Lienard, 1898 a, b, c).
Este trabalho foi seguido em 1900 por um outro na mesma linha escrito por E. Wiechert
(Wiechert, 1900). Por este motivo os potenciais que vamos apresentar recebem usualmente
o nome de potenciais de Lienard-Wiechert. Deve-se ainda lembrar que K. Schwarzschild
apresentou avancos importantes nesta mesma dire¢io (cdlculo do potencial eletrodindmico,
etc.) em 1903 (Schwarzschild, 1903 a, b, c).
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Apés este predmbulo apresentamos as formulas correspondentes. A forga de Lorentz
(1.32) expressa em termos dos potenciais ¢ e A através de (1.31) e (1 26) fica na forma,

no caso da forca de g3 em ¢:

Fy=-q (Vltﬁz + Q;‘_t_z) + @11 x (V1 x A). (5.1)
Nesta expressdo V, e V; X sido para ser obtidos no ponto onde esta a carga 1, enquanto
que ¢z € A, 80 08 potenciais gerados pela carga g;.
Os potenciais de Lienard-Wiechert sdo os andlogos de (3.49) e (4.4), invertendo os
indices 1 e 2, e substituindo Idl por p7dV, isto é |

- t.
bo(Frt) = 72 ) gy (5.2)
r12
¥ s gy — He p2(75", 8 )02(t) . '
Ann=be ] [ f Py (5.3)

Nestas expressoes o grande avango é que agora os potenciais no ponto ; no tempo ¢ séo
obtidos em fungio de onde ¢, estava no tempo retardado t* = ¢ — ri2/c. As grandezas
com asterisco siio para ser entendidas como sendo obtidas no tempo retardado, isto &,
= ry(t"), ete.

Através dos trabalhos de Lienard, Wiechert e Schwarzschild pode-se obter diretamente
a forca entre duas cargas pontuais q; e ¢; destas expressdes (isto néoc ¢ simplesmente
substituir p;dV; por ¢z, ver Whittaker, pigs. 407 a 409). O caminho para a obtengéo do
resultado final € bem complicado e esta além dos objetivos deste livro (para os interessados
sugerimos O'Rahilly, 1965, Vol. 1, Cap. 7). O que nos interessa aqui & apenas o resultado
final, que é obtido fazendo-se uma expanséo em série de Taylor de todas as expressdes que
contenham t* em torno de t* = {. Fazendo isto e indo até termos em segunda ordem em

1/c obtem-se (ver O'Rahilly, 1965, Vol. 1, pig. 220), de (5.1) a (5.3):

.. " - - 11, U » D
F21=<1132'+9101><Bz'241{ g2 —2—[7‘12(1'1' 2 2

dme, Tig 2¢2
$(Fiz-th)? Ti2-d; r12d3 " g2 1 thX#y
2" & 2¢? 22 | [T NG, 1, T 2 ' (5-4)
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Um fato extremamente importante a ser enfatizado é que apenas E," e 5,* em (5.4)
sio calculados no tempo retardado, ja que do lado direito da iiltima iguéldade todas
as grandezas (inclusive ry;, 7y, U2 e &;) estdo sendo calculadas e medidas no
tempo t e ndo no tempo retardado ¢* (lembrar que jé foi feita a expansio de Taylor
em torno de {* = { para se chegar ai). Embora a expressiao geral da for¢a tenha termos
de infinitas ordéns nas poténcias de 1/¢, pegamos apenas até os termos de segunda ordem
j8 que praticamente todos os fenémenos estudados do eletromagnetismo (como a forga de
Coulomb, a lei circuital de Ampére, o campo magnético de Biot-Savart e a lei de inducdo
de Faraday) j4 surgem com precisio suficiente nesta aproximagéo.

Trocando os indices 1 e 2, e lembrando que 7; = —f2 vem:

= = - 1 ¥ - 9,
B = * 5o Bt o 'S L 101
12=QE "+l x B >q dre, fiz{ 1+ 202

3(fi2-h)? | T12-8, ri2d; — -q1 1 9] Xfype
T3 e Yt Jtad |t \Gae, 75, @ - (69

Sdo estas as expressdes fundamentais que vamos comparar com a forga de Weber. As
equacdes (5.4) e (5.5) séo as leis de forga basicas do eletromagnetismo cléssico,

No exercicio 5.1 indicamos como que se chega no campo magnético de Biot-Savart e &
forca de Grassmann entre elementos de corrente a partir de (5.4) e (5.53). E como j& vimos
no capitulo 3, a partir dai se pode chegar em duas das equagdes de Maxwell (a de auséncia
de monopélos magnéticos e a lei circuital de Ampére). No caso em que as cargas estéo
em repouso (#) = U2 = 0 e & = d; = 0), se obtem de (5.4) e (5.5) a forga de Coulomb.
E como vimos no capitulo 1 toda a eletrostatica e a lei de Gauss (primeira das equagoes
de Maxwell) estdo embutidas ai. A lei de indugao de Faraday também sai de (5.4) e (5.5)
seguindo-se um procedimento no geral equivalente ao que foi feito com a lei de Weber no
capitulo 4 (ver ainda O’Rahilly, 1965, Vol. 2, pags. 572 a 581).

Isto mostra que as equagdes de Maxwell sdo compativeis néo apenas com a for¢a de
Weber (como vimos nos capitulos 2 a 4) mas também com (5.4) e (5.5). Isto significa que
as forgas de Weber e de Lorentz n&o podem ser distinguidas desta maneira. Mas nas segdes

seguintes mostraremos procedimentos diversos para compara-las e distingui-las.
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5.3 - Comparagao entre as Forgas de Weber e de Lorentz

A forga de Weber é dada por (2.1) ou (2.4), isto &:

5 @12 Ti2 1/, o
Py 12 T2}, L 2 (5
n= o3 [ +c2(vn V12

3 - o d -y -
- 5("12 - T)2)? + g - 012)] =-Fs . : (5.6)

O primeiro aspecto a ser observado na comparagio entre as duas leis é que a forca
de Weber sempre satisfaz ao principio de agéo e reacdo na forma forte, enquanto que a
forca de Lorentz néo satisfaz a este principio nem mesmo na forma fraca, a nio ser em
alguns casos bem especificos. Isto pode ser visto somando (5.4) e (5.5), e observando que
os termos restantes ndo vao necessariamente se cancelar.

A parte Coulombiana é a mesma em Weber e em Lorentz. Vamos agora analisar a8
componentes que dependem das velocidades e aceleragbes. Va;ﬁlos nos c@iit;cnt:ar em 1331
e chamaremos de fonte a g; € a tudo aquilo que tiver o {ndice 2 em (5.4) ¢ na. prifmﬁira
igualdade de (5.6). Chamaremos de carga de teste ou carga de prova (isto €, a carga que
sente & forga) a ¢; € a tudo aquilo que tiver o indice 1 em (5.4) e na primeira i_guﬂdade de
(5.6).

Em termos das fontes observa-se que a forca de Lorentz tem termos dependentes
linearmente da velocidade, ¥y x (U3 X fy2), (isto vem das carges que gerani © campo
magnético de Biot-Savart e a forga de Grassmann), e termos que dependem do quadrado
da velocidade, isto é, [ - /2 — 3(f13 - ©2)?/2]f12. Tem ainda termos que dependem da
aceleragiio, isto é, —[(y3 - @ )f12 + r1282]/2. Séo estes os termos que vio dar a indugéio de
Faraday em dI/dt. A forca de Weber também tem termos com este comportamento gerai,
embora com peculiaridades préprias. Os termos proporcionais & velocidade da fonte séo
[~20; - T +3(F12 - 01 )(F12 - 52)] 12, que como j& vimos sko os termos que serio responsiveis
pelo campo magnético e pela forca de Ampére entre elementos de corrente. Qs termos
proporcionais ao quadrado da velocidade da fonte sio [7; - U7 — 3(Fyz - 62)3/2]f12. Jd o
termo proporcional A aceleracdo da fonte é —(3 + @3)F13. Como jé vimos é este o termo
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responsdvel pela inducgéo de Faraday em df; /dt.

Embora as duas leis ndo sejam exatamente iguais nestes aspectos, o comportamento
geral é pareciﬂo e em geral elas vio dar os mesmos resultados, em particular quando se
tem circuitos fechados. Uma exceciio a este fato é nos termos proporcionais ao ﬁua.drado
da velocidade das fontes, e discutiremos um caso particular disto na se¢éo 5.5.

Em termos das cargas de prova, as que sentem & for¢a, observa-se que Lorentz
tem termos proporcionais a ¥; dados por —¢) X (¥ X f;3). Como j& vimos, os termos
proporcionais a ¥; em Weber sdo [—2¢; - & + 3(f12 - #1)(F12 - U2)}fi2. Na situagéo
geral de circuitos fechados estes termos vao ser equivalentes. Por outro lado Weber
tem termos proporcionais ao quadrado da velocidade da carga de prova dados por
[#h - 1 ~ (8/2)(F12 - 71)%]f12. A possivel relevancia destes termos (ndo ha semelhante
na forga de Lorentz) é discutida na segéo 5.6.

Uma distingdo fundamental que ocorre entre as forgas de Weber e de Lorentz é que
enquanto a forca de Weber depende da aceleragio da carga de prova na forma (713 - @) ).
Recentemente aplicamos uma forca de Weber a gravitagdo e mostramos a lmportincia
deste termo de Weber (Assis 1989 a). Em particular indicamos ¢como que com ele se
pode derivar uma lei equivalente & segunda lei de Newton e a precessdo do periélio dos
planetas. Também conseguimos derivar neste modelo, sem ser necessdrio postular isto
inicialmente, & proporcionalidade entre as massas inerciais e gravitacionais. Com isto foi
possivel implementar quantitativamente neste modelo o principio de Maéh, proposto pelo
filésofo e fisico experimental austriaco Ernst Mach (1838 - 1916) em 1883 (Mach, 1989).
Para uma andlise do principio de Mach ver: (Yourgrau ¢ van der Merwe, 1968; Schiff,
1964; Reinhardt, 1973; Phipps, 1978; Raine, 1981; Barbour e Bertotti, 1977; Barbour,
1989; Jaakkola 1987 e 1991; Roscoe 1991 &, b, ¢). A base deste principio € a afirmacao de
que as forgas “ficticias” (forca centrifuga, de Coriolis, etc.) s@o de fato reais e tém origem
gravitacional na interagio de qualquer corpo com o restante do universo. O modelo que
apresentamos é preliminar e limitado (por exemplo, se baseia na acéo a distiincié.), mas
pelo menos tenta trazer elementos novos na discusséo do principio de Mach. Neste livro
nao trataremos da lei de Weber aplicada & gravitacio j4 que nosso objetivo principal é a

eletrodinimica de Weber. De qualquer forma nos parece relevante chamar a atengio para
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estes novos caminhos e suas linhas de pesquisa. Para uma aplicagéo de forcas do tipo da de
Weber e similares 3 gravitagio ver: (Assis 1989 a; Eby 1977; Edwards 1974; Ghosh 1991;
Sokol’skii e Sadovnikov, 1987; Treder 1972; Treder, von Borzeszkowski, van der Merwe e
Yourgrau, 1980; Sciama 1953; Wesley 1990 b e 1991, Capitulo 6; Brown 1955 e 1982).
Uma. outra maneira de analisar a forcga de Weber € olhando para sua forma (2.1).
Lé vemos que a for¢a é wma soma de trés termos. O primeiro é a forga Coulombiana
usual, responsével pela eletrostitica e pela lei de Gauss. O segundo é o que da os efeitos
magnéticos da lei de Ampére. E o terceiro dado por g;q;f:;fi; /(4me,c?ri;) é o responsével
pela lei de indugdo de Faraday e pelos efeitos de inécia quando aplicados & gravitagao. E
este termo também um dos que di os efeitos de radiagdo eletromagnética a partir da lei
de Weber (lembrar que a intensidade da radiagdo de dipolo, ou de uma antena, cai com
1/r a grandes distancias).

Ha um outro aspecto que pode ser visto claramente pela forga de Weber ou pela de
Lorentz. Este se refere as ordens de grandeza entre as forgas elétricas, magnéticas e os
fenémenos de indugdo. De (5.4) a (5.6) vé-se que todos os termos, exceto o de Coulomb,
tém ¢ no denominador. J4 no numerador apresentam termos da ordem vf, vive, v3, riaay
e ry2a2. Mas sio exatamente estes termos os responsaveis pelo campo m'agnético, pela forca
de Ampére, e pelos efeitos de indugdo. Logo para velocidades e aceleragbes baixas como as
que existem usualmente (corrente de algumas dezenas de Ampéres, campos magnéticos da
ordem de alguns Gauss, etc.), os efeitos magnéticos e de indugéo de corrente séo de segunda
ordem em relagdo aos efeitos eletrostiticos, Isto é, se dois sistemas estéo interagindo eﬁtre si
e hi uma carga elétrica liquida (isto é, nio nula) noé dois sisternas entdo usualmente a forca
Coulombiana suplanta os efeitos magnéticos e indutivos, e embora estes efeitos existam eles
ficam mascarados. Para que estes efeitos aparecam com clareza é em geral necessério que
nos sistemas ndo haja carga liquida, ou que esta seja extremamente pequena. Neste caso
quase nio havera for¢a Coulombiana e os efeitos magnéticos e indutivos aparecerdo como
os fenémenos principais. Exemplos deste iiltimo caso € quando um imé permanente (neutro
eletricamente, gera 5 mas néo E) interage com uma corrente elétrica num fio ou com outro

imi, ou quando dois fios com corrente interagem entre si.

Nas proximas segdes deste capitulo discutiremos maiores detathes as distingbes
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entre as forcas de Weber e de Lorentz.
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5.4 - Duas Cargas em Movimento Retilineo Uniforme

Para perceber a diferenca de enfoque ao tratarmos de um problema pela forca de
Lorentz ou de Weber vamos discutir aqui casos simples da forca entre duas cargas. O
problema completo e geral (incluindo aceleragdes) de duas cargas interagindo entre si pela
forca de Weber (p'roblgma de dois corpos) estd desenvolvido em (Clemente e Assis, 1991) e
{Assis e Clemente, 1992). Nestes artigos estudamos o “espalhamento de Rutherford” com
um potencial de Weber, as 6rbitas elipticas que precessam, a velocidade limite obtida com
a eletrodindmica de Weber, etc. Néo entraremos nestes aspectos neste livro. Nesta secio

nos imitaremos a casos simples que nao envolvem a aceleracio.

(A) C&rgas em repouso.

No primeiro caso temos duas cargas g; e ¢ separadas pela distdncia fj; = ria2§ €
que estdo paradas no referencial do laboratério (que vamos considerar como um referencial
inercial). Para isto podemos supor que a for¢a Coulombiana é contrabalan¢ads por alguma
outra forga como, por exemplo, por uma forca eldstica (supondo as duas cargas ligadas
por uma mola). Neste caso como nao ha nenhum movimento des cargas vem-que as for¢as

de Lorentz € de Weber ficam com a mesma forma, isto é, como uma forca. Coulombiana

(ver figura 5.1):

F£=F2T=EE=“E=—FH~ - (6.7)
s
.ql
M2 T y
'qz
o ™ x
Figura 5.1
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{B) Cargas em movimento retilineo uniforme paralelo.

Vamos supor agora a mesma situagio vista por um observador 0’ que se move
relaciio ao laboratério com uma velocidade constante —V z, onde supomos V << ¢. O que
este observador vé esté representado na figura 5.2.

! -~

Naturalmente temos ¢} = ¢1, ¢4 = 2, &' = 2, §' =

''= ¢ e rj, = r13. Como estamos

supondo uma velocidade constante vem que @ § = @ 5 = Q. De (5.6) vem entéo (vamos

representar pelo indice ' as forgas vistas pelo observador O')

BW _pw 0% U pwe _
21 4TT€¢ r%g 12 (5 8)
yl
'}
q] vl =+Vx!
e
"2 T y
l.___—.-
q; '\};'=+v2'
o ."xl
Figura 5.2

Para & lei de Weber néo ha entéo diferenca em estarmos no referencial do laboratério
ou no referencial O’ ji que néo hd movimento relativo entre as cargas nos dois casos. Isto
ilustra mais uma vez o cardter relacional da forga de Weber, jé que esta tem sempre o
mesmo valor em qualquer referencial. )

Como estamos supondo V2 << ¢ podemos usar (5.4) e (5.5) como expresses corretas

da for¢a de Lorentz vilidas até segunda ordem em 1/c. De (5.4) e (5.5) vem entdo que

gz V2N §
B = =a (1+33) %]

- 2 N '
+'_q1V:‘éx[ @ 7 ] = Lx (1 4 )-— : (5.9)

dne, cri, dne, 22 ) r2,
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Viérias coisas se observam desta equagiio. A primeira é que a forga de Lorentz continua
satisfazendo o principio de ag8o e reagéo neste caso no referencial 0. No primeiro colchete
de (5.9) temos o campo elétrico de ¢; no referencial O', que é maior pelo fator (1+V?2/2¢%)
do que o campo elétrico visto em O. No segundo colchete temos 0 campo magnético devido
ao movimento de ¢;, campo este que nao existia no referencial Q. O resultado combinado
destas duas modificagdes é que a forca eletromagnética resultante sofre uma diminuigéio
pelo fator (1 - V2/2¢%) em relagio & forca de Lorentz no referencial O.

E é por este motivo que se diz no eletromagnetismo cléssico que os campos eléirico
e magnético se transformam um no outro dependendo do referencial. Por isto também se
afirma que néo ha realidade fisica em nenhum deles separadamente, mas apenas na forca
eletromagnética como um todo.

{C) Cargas em movimento retilineo uniforme ortogonal.

Vamos agora supor uma situagio fisica diferente. Agora ainda temos duas cargas ¢;
e ¢z se movendo com velocidade constante (isto pode ser obtido com forgas mecénicas
externas aco sistema), @ = d; = 0, mas de tal forma que no instante ¢ elas se encontrem

na situagéo da ﬁgﬁra 5.3:

y ViEv %
3 q ViV X
.‘_!
i - A
N2. 572 ¥
I sz‘_’z?
9,
0 *x
Figura 5.3

Aplicando a forga de Weber (5.6) neste caso obtem-se que
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W 9'19’2_5_ l 2_2{ _ _RwW _
N T dre, v, [”'c2 -3 )| =57 - | (5.10)

J& no caso de Lorentz vem de (5.4) e (5.5) que

N L2 .
L_9192 ¥ [, v; -
Fi= 4xe, rf,( c’) ! o : -(5'11_)
s, _ e 1 ﬁ' £y U1zl -
3 = tne, 1, [(1 + 2c2)y+ 3 .1:] . (5.12)

- Este exemplo ilustra mais uma vez que Weber sempre satisfaz o principio de agio e
reagio na forma forte, enquanto que Lorentz néo o satisfaz nem mesmo na forma fraca em
alguns casos. ‘A situagiio da Sgura 5.3 é o andlogo pars cargas da situacio da figura 3.1
para elementos de corrente neutros.

. No exercicio 5.2 séo discutidas outras situagdes com as quais se pode ver a distiﬁqé’.o

entre as forgas de Weber ¢ de Lorentz.
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5.5 - Campo Elétrico Devido a uma Corrente Estacionéria

Nesta secdo trataremos de uma diferenca especifica entre as forgas de Weber e de
Lorentz que pode em principio ser testada no laboratério. Esta diferenca tem a ver com
a componente da forca proporcional ao quadrado da velocidade das fontes. Este é um
assunto que desenvolvernos num artigo recente: {Assis, 1991 a).

Supomos entdo um fio reto infinito colocado em repouso ao longo do eixo Z. Neste
fio supomos haver uma corrente estacionaria I que néo varia com o tempo. Supondo que
o fio seja um condutor metélico usual temos que apenas os elétrons se movem. De tudo
isto vem: ¥4 = 0, d24+ = 0, 02— = VpZ, e @ - = 0 (designamos pelo indice 2 &s cargas
do fio € Vp é e velocidade de migragéo ou drifting dos elétrons). Como usualmente ocorre
na pratica, supomos que o fio é neutro eletricamente, Aa— = —Ay4, onde A é a densidade
Linear de carga. Calculamos entdo a for¢a que este fio exerce sobre uma carga ¢; situada

em r; com velocidade 7y e aceleragéo @, (ver figura 5.4):

q,
q
- I7
T
- Z
0 I
Figura 5.4

Fazendo os célculos a partir do eletromagnetismo cldssico vem que a for¢a de Lorentz

resultante neste caso é dada por (ver exercicio 5.3):

ﬁL = qlﬁ'l X B.g s (513)
I .
B, = —;‘;p"; é1 . (5.14)
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Nestas expressGes usamos coordenadas cilindricas (F) = ;1p1 + 212, 21 =0, ¢ é 0
angulo azimutal e g, ¢ a distancia de ¢; a0 fio). Temos ainda que I; = A;_Vp = — A3, Vp,
onde Ay é a densidade linear de carga dos elétrons livres no fio. Vemos entio que segundo
Lorentz o fio nio gera campo elétrico, mas apenas um campo magnético poloidal que cai
com 1fr.

Por outro lado usando a forca de Weber (5.6) obtemos que a forga resultante do fio
em ¢; é dada por (ver exercicio 5.4, e Assis, 1991 a):

F'W = Q]EM + qlﬁ'] X ﬁz ’ (5.15) :

onde B, é dado por (5.14) e E)y é dado por (ver Assis, 1991 a; e Wesley, 1987 b, e 1990
a, b):

0 _—#OII2VDI P
EM = _“_41191 F1 - (5.16)

Vemos entdo que a ttnica diferencga entre Weber e Lorentz é Que a forca de Weber prevé
uma forga adicional em ¢; dada por g3 £ps. Esta forga é independente da velocidade de g,
¢ entdio podemos chamar Ep de um campo elétrico. S6 que este ndo é um campo elétrico
usual pois o fio é neutro eletricamente e ele 86 surge devido ao fato de os elétrons no fio
se moverem enquanto os ions positivos ficam parados, de tal forma que a for¢a de Weber
de cada uma destas componentes em ¢ € diferente. Vemos entdo que este campo elétrico
surge devido a0 movimento das cargas fontes (“motional electric field”) e ¢ pmpordond
ao quadrado da corrente, e aponta sempre na mesma direcéo independente da diregéo da
corrente. ;

Embora esta forca ¢1 £y nio tenha andlogo no eletromagnetismo classico, néo é facil
de ser testada experimentalmente pois é muito pequena, de segunda ordem (proporcional
a V3 /c?). Por exemplo, se tivermos uma corrente de 10°A e uma carga elétrica ¢; tipica
de laboratdrio, de ¢ 22 1071 C, entdo esta forga serd da ordem de 10~!*N para uma
separacio p; =~ 10 cm. Esta for¢a € extremamente pequena e dificil de detectar. O
melhor experimento de que temos conhecimento para tentar detectar tal forca é devido

a Edwards e outros {(Edwards, Kenyon e Lemon, 1976). Eles mediram uma diferenca de
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potencial associada a este campo e encontraram algo desta ordem de grandeze. Além
disto concluiram que o campo apontava radialmente em dire¢fo & corrente, independente
do sentido em que esta fluia, e que era proporcional ac quadrado da corrente. Apesar de -
todas estas evidéncias néo se pode dizer que o experimento seja conclusivo e mais pesquisas
experimentais 880 necessérias antes de se tirar qualquer conclusio.

Alguns artigos que tém saido na literatura relacionados a esse assunto estimulante:
(Bartlett ¢ Ward, 1977), (Bonnet, 1981), (Curé, 1982), (Sansbury, 1985), (Gray, 1988,
pags. 1-4 e 1-5), (Hayden, 1990), (Ivezi¢, 1990), (Bartlett e Maglic, 1990), (Bartlett e
Edwards, 1990}, (Kenyon ¢ Edwards, 1991); ver também (Q’'Rahilly, 1965, Vol. 2, pags.
588-590).
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5.8 - Forgas Dentro de um Capacitor

Uma cutra componente da forga de Weber que néo tem andlogo no eletromagnetismo
cléssico é aquela que depende apenas do quadrado da velocidade da carga que sente a forga,
mas que nao depende da velocidade das cargas-fonte. A seguir ilustramos uma situagéo
onde esta componente aparece explicitamente. Este é um assunto que desenvolvemos em
dois artigos recentes: (Assis, 1989 b, Assis e Caluzi, 1991).

Seja entéo um capacitor de placas paralelas com separacio entre as placas d muito
menor do que o tamanho das placas L, d € L, de tal forma que para os cdlculos possamos
supor as placas infinitas {(ou seja, vamos desprezar os efeitos de borda). Supondo as placas
situadas nos pla.hos z =a, e = ~I,, com densidades superficiais de carga 04 ¢ —0o 4,

respectivamente, vem que o campo elétrico classico no interior do capacitor é dado por

E . =-—13% , (5.17)

!
.
O+
+
ol
Q

Figura 5.5

Como o capacitor néio gera nenhum campo magnético e a situagéo € estaciondria no
tempo, vem pela forca de Lorentz que a tnica for¢a que pode atuar sobre uma carga ¢
que se move em seu interior é dada por ¢, E,.

Ja com a forga de Weber a situagéo nio é tdo simples. Usando (5.6) pode-se calcular a

forga em ¢, neste caso € o que se obtem, supondo 7, = 2, & (—%, < 71 < %,), € 1 podendo
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estar em movimento e acelerada é (ver exercicio 5.5 € a referéncia Assis, 1989 b):

— vie(v1yf + v1:8) 4+ 221018 — 24 31] } ; (5.18)

onde ¥, ¢ a velocidade de ¢; e &, sua aceleragdo relativo as placas do capacitor.

Em primeiro lugar observamos que esta eicpresaﬁo 80 recai no caso cldssico quando
) = 0 e d; = 0. Os termos a mais que aparecem nesta expressio € que néo tém similar
em nenhuma das componentes da forga de Lorentz (5.4) sfo os termos que estdo entre
colchetes. Vemos que eles dependem do quadrado da velocidade da carga que sente a forga
e também de sua aceleracso, ¢ nada disto aparece na for¢a de Lorentz.

Nio conhecemos nenhum experimento feito especificamente para determinar a
existéncia ou néo dos termos que aparecem dentro dos colchetes em (5.18). Em (Assis,
1989 b) discutimos como estes termos fornecem uma explicagao alternativa aos famosos
experimentos de Kaufmann e Bucherer de varacdo da massa com a velocidade: Ou a
forca dentro do éapacitor é dada por ¢ E, qualquer que seja a velocidade da particula e
a massa varia relativisticamente como m = m,/(1 — v}/c?)!/?; ou entdo a for¢a dentro
do capacitor é dada por (5.18) e a massa da particula é uma constante qualquer que
seja sua velocidade. Embora estas duas explicagbes sejam fisicamente bem distintas,
ambas fornecem a mesma expressao para aquilo que é observado nos expérimentbs de
Bucherer, pelo menos até segunda orél_erln, mclusive, em v; /c. Apos escrevermos este artigo
descobrimos que as experiéncias de Kaufmann e Bucherer nio tiveram pfecisa‘io além da
segunda ordem em v; /c. Para a andlise destes experimentos e desta informacio ver: (Zahn
e Spees, 1938) e (Faragd e Janossy, 1957). O que se pode concluir disto & que para esta
situacéo experimental especifica, as duas explicagbes sdo igualmente satisfatérias.

Além disto Wesley mostrou recentemente (Wesley, 1990 a, b) que no caso deste
experimento (ver sua descri¢io em Rosser, 1964, pag. 193) as velocidades obtidas da
lei de Weber e do eletromagnetismo classico sio funcoes diferentes dos campos E. eB.

Expressando o que é medido experimentalmente ndo mais em fungo das velocidades, mas
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sim de E, e B, Wesley obteve que a lei de Weber também tem termos de quarta ordem
e que estes sio praticamente 0s mesmos que os da relatividade. Ou seja, mesmo que
estes experimentos houvessem tido preciséio até quarta ordem néo seria possivel distinguir
as duas explicacdes alternativas. Para uma discussio maior sobre todo este assunto ver
também (Assis e Caluzi, 1991; Moon e Spencer, 1955; O’Rahilly, 1965, Vol. 2, pdgs. 249
a 250 e 613 a 622; e Bush, 1926).
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5.7 - Limitacoes da Lei de Weber

Neste livio vimos vérios aspectos positivos da fora de Weber: E uma lei
completamente relacional (tem o mesmo valor para todos os observadores), satisfaz o
principio de a¢éo e reacéo na forma forte, e os principios de conservacio do momento linear,
do momento angular e da energia. Além disto com ela se derivam a for¢a de Coulomb e a
forca entre elementos de corrente de Ampére. Vimos também como se derivam a partir de
Weber as equagdes de Maxwell: lei de Gauss, da nio existéncia de monopélps magnéticos,
lei circuital de Ampére e lei de inducéo de Faraday. Apresentamos e discutimos os principais
pontos da controvérsia Ampére contra Grassmann e os experimentos relacionados com isto.
Entdo comparamos as forgas de Weber e de Lorentz e vimos que elas sio praticamente
equivalentes em seus resultados. Mostramos que a unica diferenca é que a lei de Weber
preveé alguns pequenos termos adicionais que nao aparecem na forga de Lorentz. Discutimos
alguns experimentos ligados com estes termos e como eles ainda n&o séo conclusivos para
decidir a questdo. Para uma discussdo mais aprofundada destes e de outros experimentos
ver (Assis, 1990 a).

Apesar dos aspectos positivos da lei de Weber mencionados acima, devemos ressaltar
que a forga de Weber é apenas um modelo de interagéo entre cargas que descreve uma certa
classe de fenomenos. Como tal ela pode estar sujeita a limitagdes e seu grau de validade
pode néo ser ilimitado. Por exemplo, pode ser que um modelo de interacdo mais completo
que a lei de Weber inclua também termos de quarta ordem em v/c, do tipo 7 /c*, ou térmos
como &r/dt®, etc. Caso isto seja verdade entdo a validade da lei de Weber iria apenas
até a segunda ordem em v/c, inclusive. Isto é, para cargas que se movem a velocidades
extremamente préximas & da luz pode ser que a lei de Weber nao se aplique como tal. No
momento nao sabemos se a lei de Weber tem ou néo esta limitaciéo de validade, mas nos
parece importante alertar para esta possibilidade provavel. Phipps, por exemplo (Phipps,
1990 b, c), propds uma energia potencial dada por U? = (g1¢2/47e,r12)(1 — #2/c2)1/?
para resolver os problemas que Helmhotz havia apontado na teoria de Weber, a saber,
a existéncia do assim chamado “comportamento de massa negativa” (Helmholtz 1872;

Maxwell 1954, Volume 2, Cap. 23, artigo 854, pig. 485; Whittaker, Volume 1, pigs. 203-
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4). Embora com este potencial Phipps tenha sucedido em superar as criticas de Helmholtz,
obviamente seu potencial nie é o \inico que pode fazer isto. De qualquer forma este é um
exemplo especifico de como generalizar a eletrodindmica de Weberr para ordens superiores
em v/ c. _

Um outro a.specto que tem de ser lembra.do é que apesar da for¢a de Weber incluir
termos de velocidade e aceleragiio, ainda assim ela é uma lei de aghio & distancia. Qutras
forgas deste tipo séo a..forga gravitacional Newtoniana e a fdr;a elétrica Coulombiana. Leis
deste tipo implicam em que se um corpo estava parado em relagio ao outro e de repente
sé move (devido a uma forga e:ﬁterna., por exemplo), o outro sente instantaneamente uma
mudanga. de forca, qualquer que seja sua di.stﬁncia do primeiro corpo. Isto pode ser um
aspecto pomt:vo (Graneau, 1990 8, b, ¢, d) em vista das a¢bes néo locais que aparecem
pa mecanica quantica. Por outro lado pode ser que todas as interagdes viajem a uma
velocidade finita (por exemplo, com a velocidade da luz). Mas a lei de Weber, como tal,
ndo descreve esta dltima idéia.

Alids foi exatamente este um des principais motivos pelos quais durante este século
& maior pa.rte- dos cientistas se concentraram na eletrodindmica cldssica {equagdes de
MMH, ~mais a forca lde Lorentz e os potenciais de Lienard-W}echert) € ndo na

* eletrodindmica de Weber. E isto porque vinte anos depois de Weber ter apresentado sua lej

de forga veio Maxwell e sua teoria eletromagnética da luz. Embora inicialmente a teoria
- de Maxwell ndo tivesse sido bem aceita no continente (Franca, Alemanha, Itilia, etc.)
asttuagﬁo mudou completameﬁte com as experiéncias de Hertz no periodo 1885 - 1889,
" éiue éon.ﬁrma.ram experimentalmente as previsdes tedricas de Maxwell. Uma descrigio dos
experimentos de Hertz se encontra em seu livro: (Hertz, 1962). A partir de entdo a énfase
passou a ser em teorias de campo nas quais as intefagées viajam com a velocidade da luz,
e 130 mais em teorias do tipo de agdo & distincia.

Para descrever ondas eletromagnéticas e um retardo na propagaciao das interacdes
a partir de teorias de agio & distincia hd algumas alternativas. Uma delas é utilizando
a lei de indugdo de Faraday num sistema de muitos corpos (Graneau, 1987 d). Uma
outra maneira de obter ondas eletromagnéticas ou efeitos retardados com a lei de Weber

¢ usando simultaneamente a equagio de conservacic de cargas (1.45). Um exemplo disto
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foi a obtencio da corrente de deslocamento na segio 3.5 usando esta equagio. Lembrar
que para a obtencio de ondas eletromagnéticas foi fundamental para Maxwell este termo

da corrente de deslocamento.

Uma outra maneira é introduzir diretamente na lei de Weber o tempo retardado. Isto
¢, substitui-se ¢ por t — ry3/c em todos os termos da lei de Weber., Nos tempos recentes
as idéias de témpo retardado fora.rh desenvolvidas por Sciama (Sciama, 1953) e BM'
(Brown, 1982), entre outroe. Jé a aplicacéo do tempo retardado especificamente na lei de
Weber ¢ devida a Moon € Spencer (Moon e Spencer, 1954 a, b, c), ¢ a Wesley (Wesley,
1987 b, 1990 a, b, 1991, Cap. 6). Para uma discussio suplementar sobre os diferentes
modelos de propagagéio do potencial ver ainda (Clausius, 1868) e (Archibald, 1986). Neste
livro nio discutiremos estes aspectos J& que eles estao aléi:n da eletrodinamica de Weber

em sua forma original.

Um dltimo aspecto que queremos lembrar é que a teoria de circuitos elétricos foi
- inicialmente desenvolvida por Weber e Kirchhoff, com trabalhos importantes em 1856 e
1857. O trabalho de Weber foi realizado um pouco antes gque o de Kirchhoff, mas foi
publicado com atraso. Embora eles tenham trabalhado independentemente um do outro,
ambos utilizaram a eletrodinamica de Weber como base do trabalho. ,Em partlcu.la.r eles
fbra.m os primeiros a mostrar que uma perturbagéo elétrica (um pulso de corrente ou de
#oltagem, por ez_cemplo) viaja num fio com resisténcia desprezivel com uma velocidade
lgual & velocidade da luz no vécuo. ‘O importante a ser ressaltado é que este resultado foi
obtido a partir da teoria de acdo & distancia de Weber pum problema de muitos oorpos
{(um fio vinico mas constituido de varias cargas). E isto foi realizado antes do surgimento
da teoria de Maxwell, que s6 apareceu de forma completa em 1860 - 1864. Para estas e
outras informagdes relacionadas com este topico ver: (Whittaker, Vol. 1, pégs. 224 - 236),
(Rosenfeld, 1956), (O’Rahilly, 1965, Vol. 2, pags. 523 - 535), (Jungnickel e McCormmach,
1986, Vol. 1, pags. 87, 125 - 146, 151 - 155, ¢ 296 - 301). Ver ainda (Kirchhoff, 1857 a, b).

~ Iniciamos este livro com as palavras de Maxwell. Vamos termind-lo com as palavras
de O’Rahilly, escritas em sua obra maxima (nosso grifo): Electromagnetic Theory - A

Critical Examination of Fundamentals. Neste trecho temos um resumo das coisas que
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Weber realizou e das idéias que defendeu (entre colchetes vao nossas palavraé):

“Se qualquer homem merece crédito pela idéia sintética que unifica os varios ramos
da ciéncia elétrica e magnética, este homem é Wilkelm Weber. Hoje, mesmo aqueles que
defendem a tearia do éter ou que professam serem relativistas aceitam estes principios
introduzidos ou desenvolvidos por ele: que a idéia de Ampére do magnetismo como
sendo devido a micro-correntes pode explicar fenOmenos relevantes; que a eletricidade
tem uma estrutura atdmica [isto é, granular ou corpuscular]; que as correntes sdo fluxos de
particulas; que as forgas de Ampére [entre elementos de corrente] agem diretamente entre
estas particulas e nfio entre os condutores; que a lei de Coulomb deve ser modificada
para cargas em movimento; que, como disse Gauss, a acio nio ¢ instantdnea; que
as leis da eletrodinamica [forca entre elementos de corrente de Ampére] e da indugho
podem ser deduzidas por uma soma estatistica, a partir de uma férmula de for¢a para
particulas [cargas] elétricas. Mesmo seu principio balistico, submerso por tanto tempo
pelos eteristas e relativistas, parece que provavelmente desafiarda os fisicos mais uma vez

na forma desenvolvida dada a ele por Walther Ritz.” (O’Rahilly, 1965, Vol. 2, pég. 535).
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5.8 - Exercicios

5.1 - (A) O campo magnético de Lorentz & dado pela segunda chave de (5.4). Supondo
elementos de corrente neutros eletricamente, dg;.. = —dgsy e dga; = Agydlz, onde dly
é o comprimento do elemento de corrente, some as contribuigbes das cargas positivas e
negativas ao campo magnético e use (3.4) para chegar no campo magnético de Biot-Savart
(3.8).

(B) Agora vai-se usar toda a expresséo (5.4). Suponha elementos de corrente neutros
e que dg;— = —dgay = —A24dlz, dgi— = —dq14+ = —A14dl;. Some entéo as forcas entre

o0s pares de carga usando (5.4) para chegar na forga de Grassmann, isto &
EFG = PPy + PFya-+ EFRo s + P F_ .

Nesta expressao ff“g € dado por (3.7) e (3.8), ou por (3.10). Para chegar nisto use
ainda (3.3) e (3.4).
Este exercicio ilustra mais uma vez que a partir da forga de Lorentz se chega na forga

de Grassmann, e nio na for¢a de Ampére.

5.2 - (A) Use (5.4) a (5.6) para calcular a forga entre duas cargas que se movem ao
longo do eixo X com mesma velocidade, isto é: 7y = 312, T} = 228, U) =V 2, Vh =V, 4.
Compare Weber e Lorentz. |

(B) Compare novamente Weber e Lorentz, (5.4) a (5.6), quando 7} = 212+ 19, 72 =
z2% + ya¥, 13'1. = V,Z e 7 = V,§. Observe se é previsto algum torque neste caso,

5.3 - Derivagio de (5.13).

(A) Como o fio é neutro eletricamente vem que ¢, = 0. Como a corrente é estacionéria,
constante no tempo, vem que dA, /8t = 0. De (1.31) vem que: E; = 0. Use entéio (1.32) eo
campo magnético de Biot-Savart (1.20) para chegar em (5.13). Para isto tem-se de calcular
a integral (1.20) e pode-se usar, sem perda de generalidade, 2; = 0, tal que 7 = 2, & + 1 4.
Tem-se ainda: dly = dzy2.

112



(B) Uma outra maneira de calcular o campo magnético B, & usando a lei circuital de
Ampere (1.49). Como a situacio é estaciondria vem que d®g/dt = 0. Use como circuito C
um circulo centrado no eixo Z, onde passa a corrente I;. Como por simetria B, ¢é poloidal,
vem que B, é paralelo a di; em cada ponto deste circuito. Como [ [ J - dd2 = I, vem

que se pode obter B, de (1.49). Calcule-o para ver que é dado por (5.14).

5.4 - Derivagéo de (5.15).

(A) Parta de (5.6) para calcular a for¢ga de um elemento de corrente em ¢;. Substitua
o por'dqz = A2dz;. Suponha um elemento de corrente neutro ddric&nmte, isto &,
S A = —A2+.' Some as for¢as de Ay4dz; € A2—d2z; em 1, lembrando que 7 = 232, a4 =
0, @4 =0, ¥ =Vp2, a3 =0. Useaindar) =z +119, U1 = 01, +v,§+ 0.3,
e d) = a1, & + a3, + a1, 3.

(B) Integre o resultado anterior em z2 de —oo a +00.

(C) Use os seguintes fatos para colocar o resultado anterior na forma (5.15) e (5.16):
xy =p1cosSyPy, Y1 = p1sing;, g = Fcosy; +y‘sin<,o_1, $1 = —Zsing; + §cosyp,, € que

é] 4 (-;”2 - (é’lszz - G;,Gzy)f 4+ (G13G2z - G1=G2z)§ + (GlzG2y - GlyGh)i-

5.5 - Derivagao de (5.18).

(A) Use (5.6) para calcular a forca de um elemento das placas em g;. Substitua, g
por dg: = o 4daz, onde o4 é a densidade superficial de carga na chapa de cima e da;
um elemento de drea. Sem perda de generalidade j4 que as placas sdo infinitas, coloque
¥y1 = 21 = 0 no tempo t. Deixe as velocidades e aceleracdes gerais de tal forma que
01 = i3z + vy + 2v1., & = £a3; 4§61y + 2ay;. Use coordenadas “cilindricas” mas com
o eixo de simetria sendo o eixo X. Some as contr%bniqﬁes de dg,4 e dg;_ localizadas em
(X20,¥2,22)-

(B) Integre o resultado anterior primeiro em @, de O a 27, e depois em p; = (z3+y3 P2
de O a R.

(C) Faca o limite em que R tende a infinito.

(D) Obtenha. entéo (5.18) rearranjando os termos.
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APENDICE A

As Origens e os Significados da Forca Magnética F= gy’ % B

Como vimos no capitulo 1, a componente elétrica da forca de Lorentz (I:"'E = qé, com
E = —V$—0A/5t) j4 era usada desde pelo menos 1857 com Kirchhoff, quando ele escreveu
a lei de Ohm: de maneira generalizada incluindo os efeitos de auto-induténcia. O potencial
vetor magnético A havia sido introduzido por Franz Neumann em 1845, onde mostrou qﬁe
B =V x A, sendo B o campo magnético. J4 a expressao para a forca magnética teve uma
origem posterior € bem mais tortuosa, e este é o assunto deste apéndice.

A primeira informacéo relevante a ser ressaltada é que ela é posterior & morte
de Maxwell, ocorrida em 1879. Segundo Whittaker os primeiros a chegarem na forca
magnética foram J. J. Thomson (1856 - 1940) e O. Heaviside (1850 - 1925), em 1881 e
1889, respectivamente (Whittaker, 1973, Vol. 1, pags. 306 a 310). Para uma analise bem
detalhada dos trabalhos de Thomson e Heaviside ver (Buchwald, 1985, Apéndice Um).

Um dos objetivos do trabatho de Thomson de 1881 (Thomson, 1881) era saber de que
forma um corpo carregado eletricamente é afetado por um imi, Thomson segue a teoria
de Maxwell e em particular usa a idéia de que uma corrente de deslocamento (¢9F/8t)
- produz os n;esmos efeitos que uma corrente de condugio J usual, isto &, de que tambél‘n
gera B. Supde entdo uma esfera uniformemente carregada se movendo num certo meio com
constante dielétrica ¢ e permeabilidade magnética y, e calcula a corrente de deslocamento
num ponto externo @. Depois calcula num outro ponto externo P o valor do potencié,l
vetor magnético A devido a esta corrente de deslocamento em Q, e integra para todos os
pontos @ do espaco. Contudo observa que o valor V - A neste ponto P é diferente de
zero. Maxwell sempre assumia V - A = 0 e ent3o para satisfazer a esta condi¢io Thomson
supde a existéncia de uma outra componente em A, adicionando esta componente ao que
jé havia obtido para A (nfo justifica qual a origem fisica desta componente adicional de
A). Através de B = V x A4 obtem entio o valor de B no ponto P. Calcula entéo o valor

de H neste meio, H = B/u. Em seguida calcula a forga de um ima (que gera §) num
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corpo carregado eletricamente que se move por este meio. Para isto calcula a energia de
interagio E = [ [ [ (B - H/2)dV, e usa as equagdes de Lagrange para obter a for¢a. Seu
resultado final:

(A1)

Este vaior ¢é metade do aceito no eletromagnetismo cldssico hoje em dia. O aspecto
meis importante que queremos ressaltar aqui € o significado da velocidade que aparece em
(A1). Neste ponto Thomson foi bem cuidadoso. Ele chamava esta velocidade de velocidade
real (“a;:tua.l‘velocity”) da particula. Na pégina 248 de seu artigo ele afirma (nosso grifo):
“Deve ser observado que aquilo que .por conveniéncia chamamos de velocidade real da
particula €, de fato, a velocidade da particula relativa ao meso através do qual ela estd
se movendo,” ..., “meio cuja permeabilidade magnética é p.” Ou seja, para Thomson a
velocidade & em (Al) nilo era a velocidade da carga relativa a0 éter, nem em relagéo ao

imi, e nem a velocidade em relagio ao observador.

-Em 1889 Heaviside obtem (Heaviside, 1889):
F=gixB. - (A2)

A diferenga principal de seu trabalho em relacdio ao de Thomson é que ele inclui,
seguindo Fitzgerald em 1881, a corrente de convec¢ao como fonte de campo magnético.
~ Fora isto vem que Heaviside segue o trabalho de Thomson (um dos objetivos de seu artigo
é corrigir o trabalho de Thomson). Como ele nio faz nenhum comentério adicional sobre
a velocidade ¢ em (A2), pode-se assumir que também para ele aquela é a velocidade da:
carga ¢ em relagio ao meio de permeabilidade magnética y e constante dielétrica e Isto’
pode ser visto pelo titulo de seu artigo. R

Em 1892 e 1895 o fisico tedrico H. A. Lorentz apresenta a conhecida éxp:l.'esséb'
(Lorentz, 1892 e 1895): '

F=qE+¢ixB. . (A3)
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Lorentz nao cita Thomson nem Heaviside, e aparentemente chegou na p&te magnética
desta expressdo a partir da forga de Grassmann substituindo I di’ por ¢¥, embora ele também
ndo cite o trabalho de Grassmann. Isto pode ser visto no livro mais famoso de Lorentz,
The Theory of Electrons (Lorentz, 1915, pigs. 14 e 15). Este livro é baseado em um
curso que ministrou em 1906 na Universidade de Columbia, € foi editado pela primeira vez
em 1909. Infelizmente Lorentz nio especifica em (A3) em relagéo a que objeto, meio ou
sistema deve ser entendida esta velocidade ¥ da carga ¢. Como Lorentz ainda aceitava o
éter de Maxwell (isto ¢, um meio em repouso absoluto em relagio ao referencial das estrelas
fixas, e através do qual a terra se move como se fosse transparente a ele, sem empurré-lo
ou arrasta-lo; ver (Pais, 1982, piag. 111)), é natural que para ele esta velocidade fosse em
relaciio a este éter, e ndo em relagio a qualquer meio ou observador. Em suporte a isto
temos as préprias palavras de Lorentz nesta mesma pagina 14: “Agora, de acordo com
os principios gerais da teoria de Maxwell, vamos considerar esta forga como causada pelo
estado do éter, e mesmo, como este meio penetra os elétrons [nome que Lorentz usava para
as cargas elétricas em geral}, como exercida pelo éter sobre todos os pontos internos destas
particulas onde ha uma carga.” Uma prova conclusiva desta interpretacio se encontra em
outro trabalho de Lorentz: Lectures on Theoretical Physics (Lorentz, 1927, Vol. 3, pag.
306; ver também O’Rahilly, 1965, Vol. 2, pag. 566). Ai Lorentz afirma que se um fio com
' cérrente elétrica (e portanto gerando B) e uma carga estéio parados em relagao ao éter,
entdo nio vai haver forga magnética. Por outro lado se ambos estiverem transladando com
a mesma velocidade ¥ em relagio no éter (sendo que o observador e o laboratério também
transladam com esta mesma velocidade U, j4 que di como exemplo desta velocidade a
velocidade da terra em relagéo ao éter), entéo afirma que vai haver uma forca magnética.
du seja, como na segunda parte deste exemplo ndo ha. velocidade relativa da carga em
relagdo ao fio, nem em relagio ao laboratério, nem em relagio ao observador, mas apenas
em relagiio ao éter, e ainda assim hé uma for¢a magnética, se conclui que para ele aquela

velocidade que aparece em (A3) é realmente a velocidade da carga ¢ em relagio ao éter.

Por outro lado hoje em dia se usa a expressdo (A3) com © sendo a velocidade da carga
¢ em relagao a um observador. A mudanga ocorreu a partir do trabalho da relatividade
restrita de Einstein de 1905 (Einstein, 1978). Neste trabalho, apés obter as transformacgdes
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de coordenadas de Lorentz, Einstein as aplica para a forca (A3) e passa a usar a velocidade
como sendo a velocidade em relagdo ao observador. Por exemplo, na pagina 71 coloca
(entre colchetes s&o nossas palavras) a diferenca entre a antiga visdo do eletromagnetismo
e a viséio baseada em sua teoria da relatividade:

“l - Se um pdlo elétrico unititio [¢ = 1], puntiforme, se move num campo
eletromagnético, exercer-se-4 sobre ele, além da forca elétrica {Fg = ¢F], uma “forca
eletromotriz” que, desprezando termos em que entram como fatores poténcias de v/c de
grau igual ou superior a 2, ¢ igual ao quociente pela velocidade da luz do Muto vetorial
formado com a velocidade do pdlo unidade e com a for¢ca magnética [isto ¢é, B, tal que
Fy = qF x B/c, Einstein usa aqui o sistema de unidades cgs-Gaussiano, Logo a forca
resultante é: F = gE + ¢¥ x B/d). (Antigo enunciado)

2 - Se um polo elétrico puntiforme unidade se move num campo eletromagnético,
exercer-se-4 sobre ele uma forga idéntica & forca eltrica [F' = g&) que se obtem no ponto
ocupado pelo pdlo quando se submete o campo & umé transformagéo de coordenadas
[0 — O], 2 fim de o referir a um sistema de eixos [0'] que esteja imdvel em relacio ao
referido pélo [7' = 0, logo ¢E + g7 x B/c = ¢E', onde as varidveis com ! ge referem
aos campos no sistema de coordenadas O’ que se move com ¥ em relacio a8 0]. (Novo
enunciado)” o

Aparentemente Lorentz passou a aceitar esta interpretacio do significado de ¥ em
(A3). Vemos isto nas paginas 198, 199; 330 e 331 de seu liviro The Theory of Electrons
(Lorentz, 1915). Estas duas ultimas paginas, em particular, apareceram apenas na segunda
ediggo do livro, em 1915. |

E instrutivo ver esta mudanga concejtual (mas ndo de forma) numa das leis mz;is

utilizadas na fisica.
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APENDICE B

Lagrangeana ¢ Hamiltoniana de Weber

. Na mecénica cldssica podemos descrever e resolver os problemas usando as equagdes
de Newton. Equivalentemente podemos fazé-lo usando as chamadas equagdes de Lagrange
ou as de Hamilton. Também se pode fazer o mesmo na eletrodindmica de Weber, como
ele 0 mostrou entre 1869 e 1871 (Weber, 1871). E este o assunto deste apéndice.

Vamos tratar do movimento de duas cargas ¢, e ¢, de massas m; e m,, interagindo
entre si de acordo com a lei de Weber, e sem a presenca de forgas externas (a generalizacio

para N cargas é direta). Definimos duas fun¢des S e T por:

—ael () .
5= 4me, 1z (1 + 2c2) ? .(Bl)
P2 m B0y 8 (B2)

Nestas equagoes #; e ¥ sio as velocidades das cargas ¢, e ¢; em rela'qiio a um referencial
inercial, ¥, = dry /dt, U2 = dip/dt, e r12 = |F) — I:'zl, Fi2 = df‘lg/dt.

Weber definiu sua Lagrangeana na forma
L=T-5. _ . - (B3)

A forca de Weber pode ser obtida da maneira usual da formulagio Lagrangeana a
partir de S. Isto é, sendo #; = dx;/dt, onde 7y = 2% + 1§ + z;Z é o raio vetor de ¢,

temos que a componente z da forca sobre ¢; é dada por

=

gS 08  qpaz— 2 (1 &7} + ":lzf":z) . (B4)
Ty ;

d
dt T Bz 4me, 1y Y] c?

Nesta equacao 712 = drya/dt.

Fazendo o mesmo com as outras componentes e com as variaveis da carga g2 obtem-se:
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- . -
o 192 "1z { "2 N2tz
T e o— 1 — . e ——— - N
Fn= et ( 55t g3 ) 12 (BS)

Jé a Hamiltoniana do sistema é definida por

a=(Gng)-s e

Nesta equacdo ¢k, com k indo de 1 a 6, representa as componentes das v;éloéidades,
isto &, £1, 91, 21, £2, Y2, © 2o, Tespectivamente. -
Observando que S ¢ T nio dependem explicitamente do tempo vem qﬁc BL/ St=0e
AH /8t = 0. Disto obtem-se que H é uma constante de movimento, dH/dt = 0, que neste
caso ¢é a prépria energia E do sistema. De (B1) a (B6) vem entdo, apés fazer as contas
indicadas por (B6):
E=H=T+U, (B7)
dE
e 0. (B8)

- Em (B7} U é a energia potencial de Weber que havia sido introduzida no capitulo 2
e que é dada por

ag 1 12 :
U=2"C _|{1-=="51}. _
4‘4‘?60 r12 (1 2¢2 (Bg)

Queremos chamar a atencéo que $ é diferente de U ja& que ambas diferem no sinal em
frente de 73,. Embora a Lagrangeana seja dada por L'=T-S5, a Hamiltoniana e a energia
que se conservam sio dadas por H = E =T+ U, e néo por T' 4 §. Algo anélogo ocorre
na mecénica e eletrodinimica classicas quando ha potenciais generalizados que dependem

n#o 86 da distancia entre os corpos mas também de suas velocidades,

As equacbes de movimento séo as equacdes de Lagrange usual, isto é

d oL oL

-&;a—dk“a_q‘:'—_-o;k:l,c--,s- (BIO)

119



Nesta equagéo gi representa cada uma das coordenadas r;, yi1, 21, Z2, Y2 € z2. Dai
se obtem, apds fazer as contas: '

~ =2 - ' . .
N9z Tizf, Tiz , M2Ta2) _
dme, i, (l 2c2 + c2 ) ™a - (B1Y)

Obtem-se o andlogo para m3. E isto é exatamente a segunda lei de Newton aplicada
a uma for¢ca de Weber, CQD.
Sugerimos que o leitor refaca as contas indicadas nesta segéio para que se familiarize

com esta técnica.
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