

II Encontro de Biomatemática

www.ime.unicamp/~encbiomat2018

encbiomat@gmail.com

6. Comunicações Orais

A estratégia reprodutiva do hospedeiro favorece o estabelecimento de cupins inquilinos em cupinzeiros

Vinícius B. Rodrigues¹, Elio Tuci², Horst Holstein³, Miriam S. Bowen⁴, Diogo A. Costa⁵, Lucy T. Takahashi⁶, Paulo F. Cristaldo⁷, Og DeSouza¹ Laboratório de Termitologia, Departamento de Entomologia, Universidade Federal de Viçosa

- ² Department of Computer Science, Middlesex University London
- ³ Department of Computer Science, Aberystwyth University
- ⁴ Department of Mathematics, Warwick University
- ⁵ Departamento de Zoologia, Universidade do Estado do Mato Grosso
- ⁶ Laboratório de Pesq. em Matemática Aplicada, ICE, Universidade Federal de Juiz de Fora
- ⁷ Departamento de Ecologia, Universidade Federal de Sergipe

Introdução

A coabitação de diferentes espécies de cupins em um ninho inicialmente construído por uma delas, é chamada de inquilinismo. Os relatos dessa interação na literatura são de longa data [4] e ainda continuam sendo frequentemente documentados. No entanto, os mecanismos responsáveis pela coabitação inquilino-hospedeiro ainda são incipientes. Sabe-se que existe uma correlação positiva entre a presença dos inquilinos e a reprodução da colônia hospedeira [3]. Mas por que isso acontece? Nossa hipótese é que ocorre uma diminuição na defesa do ninho hospedeiro decorrente da reprodução. A reprodução é

¹viniciusbrbio@gmail.com

um processo prioritário e energeticamente custoso e compete diretamente com demais castas estéreis pelos recursos disponíveis [1]. A casta de soldados é estéril e especializada na defesa do ninho e, devido às suas características morfológicas, são incapazes de se alimentarem sozinhos, necessitando dos operários para isso, o que representa um elevado custo energético. Neste trabalho, esse conflito energético entre reprodução × defesa foi desenvolvido e testado teoricamente, através de um modelo matemático, e empiricamente, com experimentos de campo, com o cupim construtor *Constrictotermes cyphergaster* Blattodea, Isoptera, Termitidae, Nasutitermitinae) e seu inquilino obrigatório *Inquilinitermes microcerus* (Blattodea, Isoptera, Termitidae, Termitidae, Termitinae) (Silvestri, 1901).

Desenvolvimento

O modelo matemático proposto, sistema (6.1), foi baseado no de Oster & Wilson (1978) [2] que descreve a variação do investimento energético nas castas (e suas respectivas funções) em colônias de insetos sociais ao longo do tempo, mas que não considera a presença de soldados verdadeiros. Consideramos a população de cupins, C, dividida em 3 diferentes castas: a dos operários (w), a dos soldados (d), e a dos reprodutivos alados (s). O tamanho de cada uma destas castas varia em relação ao tempo, t. Assim, no tempo t a população total é dada por C(t) = w(t) + d(t) + s(t).

Os recursos adquiridos pela colônia são distribuídos entre as castas. Os operários recebem a fração 1 - u(t) dos recursos disponíveis, e as demais castas (soldados e reprodutivos) recebem a fração u(t), onde $0 \le u(t) \le 1$. Os recursos disponíveis na fração u(t), por sua vez, são divididos entre a casta de reprodutivos, que recebem a fração 1 - a(t), e a casta dos soldados, que recebem a fração a(t); a também depende do período em que se encontra a colônia e $0 \le a(t) \le 1$. A capacidade de coletar recursos pelos operários é representado por α enquanto o recurso disponível é dado por γ , veja Eq. 6.3. A mortalidade dos indivíduos pode ser reduzida pela proteção, P, proporcionada pelos soldados (ver Eq.6.2). A taxa de crescimento, γ , da colônia está relacionada com a podutividade dos operários w, que é dada pela diferença entre o recurso coletado e o consumo desses recursos pelas castas, veja Eq. 6.3. Cada casta possui uma dinâmica diferente e, portanto, consideramos μ_w , μ_d e μ_s as taxas de mortalidade distintas para as castas operários, soldados e reprodutivos, respectivamente. Afim de analisar esta dinâmica populacional definimos um sistema acoplado de equações diferenciais ordinárias:

$$\begin{cases}
\dot{w} = (1 - u(t))\gamma(t)w(t) - \mu_{w}w(t)P \\
\dot{d} = u(t)a(t)\gamma(t)w(t) - \mu_{d}d(t) \\
\dot{s} = (1 - a(t))u(t)\gamma(t)w(t) - \mu_{s}s(t)P
\end{cases} (6.1)$$

onde, ($\dot{}$) representa a diferenciação no tempo d/dt,

$$P = 1 - \tanh\left(k\frac{d(t)}{w(t) + s(t)}\right) \tag{6.2}$$

$$\gamma = (\gamma_0 - \alpha w(t)) \left(1 + \tanh \left(k \frac{d(t)}{w(t) + s(t)} \right) \right). \tag{6.3}$$

Em relação ao teste empírico, foi realizado um censo completo dos indivíduos das colônias. Para isso, ninhos de *C. cyphergaster* foram selecionados de acordo com o volume e levados

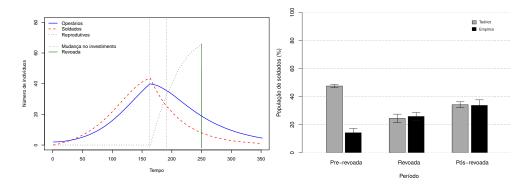


Figure 6.1: Estratégia de investimento para as colônias de cupins (direita) e comparação entre a predição teórica e os dados de campo. Foram utilizados os seguintes parâmetros: tempo T= 350, produtividade γ_0 = 0,05, α = 0,0008 e mortalidade: operários μ_w = 0,015, reprodutivos μ_s = 0,10 e soldados μ_d = 2× μ_s .

ao laboratório. Os ninhos foram quebrados e todos indivíduos visíveis foram coletados e armazenados em álcool 80%. Parte dos resultados estão apresentados nas Figura 1.

Conclusões

Verificamos que, de fato, o início do período reprodutivo e a subsequente produção de alados afeta negativamente a defesa das colônias. O modelo teórico proposto mostrou que para um incremento na produção de reprodutivos é necessário uma redução do investimento em soldados, uma vez que a produção de recursos é limitada. Essa predição, por sua vez, foi testada e confirmada em experimentos de campo. A produção de soldados na colônia é afetada negativamente pela reprodução do hospedeiro. Assim, durante a reprodução ocorre uma "janela de oportunidades" para a invasão do ninho pelo inquilino.

Referências

- [1] G. de Jong e A.J. van Noordwijk. Aquisition and allocation of resouces: Genetic (co)variances, selection, and life histories. *American Naturalist*, 139(4):749-770, 1992.
- [2] G.F. Oster e E.O. Wilson. Caste and ecology in the social insects, volume 12 of Monographs in Population Biology. Princeton University Press, 1st edition, 1978. ISBN: 9780691023618.
- [3] V.V. Rodrigues. Interações populacionais e individuais entre cupins inquilinos e hospedeiros. PhD thesis, Universidade Federal de Viçosa, 2017.
- [4] F. Silvestri. Contribuzione alla conscenza dei Termitidi e Termitofili dell' Africa meridionale. *Reida*, 1:1-234, 1903.