Probabilidades de Fixação no Processo de Moran com três estratégias

Eliza M. Ferreira¹, Armando G. M. Neves²

Introdução - O Processo de Moran

Consideremos uma população fixa com N indivíduos divididos em três tipos, digamos A, B e C. O estado $X_n = (i, j)$ da população no instante de tempo discreto n é dado pelo número de indivíduos i de tipo A e j de tipo B. Naturalmente, o número de indivíduos de tipo C é N-i-j. O estado é representado por um ponto em uma malha triangular sobre um triângulo equilátero, ver Figura 6.8.

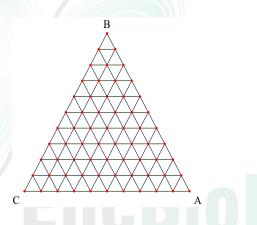


Figure 6.8: Temos aqui uma rede triangular para N=10. Os estados da população são dados pelos pontos vermelhos.

A dinâmica populacional é modelada por dois sorteios independentes a cada unidade de tempo, um sorteio uniforme de um indivíduo para morrer e um sorteio para reprodução que dependerá da aptidão de cada indivíduo. Supomos ainda, em geral, que a aptidão dos três tipos depende de suas frequências na população.

Este processo estocástico é uma cadeia de Markov com espaço de estados finito, sendo (0,0),(0,N) e (N,0) estados absorventes e o restante estados transientes da cadeia [1]. Da teoria das cadeias de Markov, após tempo

¹Departamento de Ciências Exatas, UFLA, Lavras, MG

²Departamento de Matemática, UFMG, Belo Horizonte, MG

¹eliza.ferreira@dex.ufla.br

²aneves@mat.ufmg.br

suficiente, a população será constituída por todos os indivíduos de um mesmo tipo. Este fenômeno é conhecido como fixação.

A Probabilidade de Fixação

A probabilidade π_{ij} de que ocorra fixação do tipo A, a partir da condição inicial de i indivíduos do tipo A e j do tipo B, como pode ser visto também em [2], será dada por uma média ponderada dos valores da mesma função nos 6 vizinhos mais próximos da malha triangular.

$$\pi_{ij} = \frac{1}{1 - p_i^j} \left[p_{i+}^{j-} \pi_{i+1,j-1} + p_{i-}^{j+} \pi_{i-1,j+1} + p_{i+}^j \pi_{i+1,j} + p_{i-}^j \pi_{i-1,j} + p_{i-}^j \pi_{i+1,j} + p_{i-}^j \pi_$$

onde os pesos $p_{i\pm}^{j\pm}$ são dados por funções conhecidas. Os valores de π_{ij} nos pontos da fronteira do triângulo são conhecidos. Os valores dos π_{ij} nos pontos da malha no interior do triângulo são obtidos pela resolução de um sistema de equações lineares com (N-1)(N-2)/2 incógnitas.

Pode-se provar que o sistema linear (6.23), que define as probabilidades de fixação dada uma condição inicial, tem solução única.

Resultados

Como uma contribuição ao estudo das probabilidades de fixação do processo de Moran para três estratégias, estudamos o caso mais simples onde, apesar de as aptidões serem dependentes da frequência, consideraremos que os indivíduos de tipo A são mais aptos que os dos outros dois tipos quaisquer que sejam as frequências desses tipos. Exibiremos nesse caso uma cota para π_{ij} . Dessa cota resulta que, para qualquer par $(x,y) \in R^2$, x > 0, y > 0, x + y < 1, a probabilidade de fixação dos indivíduos do tipo A no ponto da malha triangular mais próximo do ponto correspondente a (x,y) tende a 1 quando $N \to \infty$. Esse resultado será provado usando a técnica de acoplamento de cadeias de Markov. Mais especificamente, construiremos uma segunda cadeia de Markov em que a probabilidade de fixação $\pi_{ij}^{(2)}$ seja explicitamente calculável e, tal que, quando as duas cadeias são realizadas simultaneamente, toda vez que houver fixação de A na segunda cadeia,

haverá fixação de A na primeira. Daí, a cota inferior $\pi_{ij} \geq \pi_{ij}^{(2)}$ da qual conseguimos provar o resultado desejado.

Este trabalho tem como motivação biológica enriquecer modelos mais simples, tornando-os mais realísticos. Ainda nesta linha, os resultados obtidos neste trabalho podem ser muito úteis para estudar estocasticamente a evolução da cooperação com três estratégias.

Referências

- [1] L. J. S. Allen. An introduction to stochastic processes with applications to biology. Chapman & Hall/CRC, Boca Raton, FL, 2011.
- [2] J. Wang, F. Fu, L. Wang, and G. Xie. Evolutionary game dynamics with three strategies in finite populations. *arXiv* preprint physics/0701315, 2007.

