

Geometry Webinar AmSur/AmSul

Infinitesimally Bonnet bendable hypersurfaces

Ruy Tojeiro

Universidade de São Paulo 31/03/2023 - sexta-feira 14:00 - Online

Resumo: The classical Bonnet problem is to classify all immersions $f:M2\rightarrow R3$ into Euclidean three-space that are not determined, up to a rigid motion, by their induced metric and mean curvature function. The natural extension of Bonnet problem for Euclidean hypersurfaces of dimension $n\geq 3$ was studied by Kokubu. In this talk we report on joint work with M. Jimenez, in which we investigate an infinitesimal version of Bonnet problem for hypersurfaces with dimension $n\geq 3$ of any space form, namely, we classify the hypersurfaces $f:Mn\rightarrow Qn+1c$, $n\geq 3$, of any space form Qn+1c of constant curvature c, for which there exists a (non-trivial) one-parameter family of immersions $f:Mn\rightarrow Qn+1c$, with f0=f, whose induced metrics gt and mean curvature functions Ht coincide ``up to the first order", that is, $\partial/\partial t|t=0gt=0=\partial/\partial t|t=0Ht$.