



## **CURVAS ALGÉBRICAS E TEMAS AFINS**

Uma abordagem para o problema da contagem de semigrupos pelo genero via politopos

## **Matheus Bernardini**

Universidade de Brasília 08/06/2018 - Sexta-Feira 15h00 - Sala 121

**Resumo:** Dado um inteiro nao negativo g, denotamos o conjunto de semigrupos numericos com esse genero por Sg e sua cardinalidade por ng. Alguns numeros dessa sequencia sao (1,1,2,4,7,12,23,39,67,118,...). Zhai mostrou que ng+1 ng se aproxima do numero aureo e, portanto, ng < ng+1, para g suficientemente grande. Ainda e um problema em aberto decidir se ng < ng+1 ocorre para todo g  $\in$  N

Dados inteiros nao negativos g e  $\gamma$ , denotamos o conjunto de semigrupos numericos de ^enero g e  $\gamma$  lacunas pares por  $S\gamma(g)$  e sua cardinalidade por  $N\gamma(g)$ . Torres mostrou que se  $S \in S\gamma(g)$ , ent^ao  $2g \ge 3\gamma$ ; logo ng = Pb2g/3c  $\gamma=0$   $N\gamma(g)$ . Bernardini e Torres mostraram que  $N\gamma(g) = N\gamma(3\gamma)$ , se  $g \ge 3\gamma$  e, caso contr´ario,  $N\gamma(g) < N\gamma(3\gamma)$ . A partir do mapa sobrejetivo  $x: S\gamma(g) \to S\gamma$ ,  $S \to S/2$ ,  $SY(g) \to S\gamma(g)$  pode ser calculado pela expressaoPT $\subseteq S\gamma$   $\gamma=1$ (T). Nesta palestra, estudamos o problema de calcular os numeros  $S\gamma(g)$  usando a multiplicidade de  $S\gamma(g)$  e seu conjunto de  $S\gamma(g)$  es abordagem nos leva a um problema de contagem de pontos inteiros em politopos e tem uma relacao proxima com o problema de decidir se a sequ^encia (ng) 'e crescente, para  $\gamma(g)$   $\gamma(g)$ 



