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Introduction

» We study the existence and asymptotic behavior of semi-positive
solutions, i. e. having positive and sign-changing components
to the singularly perturbed system of elliptic equations

¢
—e?Au; + uj = pi|ui P20 + 30 XiBij|uj| %9 || Pi =2 u;,
JJ;} (SQ,E)
U;EH&(Q), U;#O, i=1,...,¢

» ¢ > 0is a small parameter, Q is a bounded smooth domain in RV,

» N> 4, Wi > 0, /\ij = )\ji < 0, (lij,ﬁij > 1, Qi = Dii,
Qjj - “D}ij =pc (2,2*)

and 2* := 21 is the critical Sobolev exponent.
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Introduction

» If Q = B;1(0) we obtain solutions exhibiting two different types of
asymptotic behavior as ¢ — 0:

(1): the limit profile is a rescaling of a solution with positive and
nonradial sign-changing components of the limit coupled system

4
—Au; + up = lffi|Ui|p72Ui aln Z )\,-jﬁ,-j|uj|a"f u,-|6"/"2u,-,

J;é} (Soc,f)
ui € HYRN), wu; #0, i=1,...,¢.

(2): the limit profile is a solution of the uncoupled system, i.e.,
after rescaling and translation, the limit profile of the i-th component
is a positive or a nonradial sign-changing solution to the equation

—Au; +u; = u,-|u,-|”72u,-, uj € Hl(RN), uj 75 0.
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Physical Motivation

» This system arises as a model for various physical phenomena, in
particular in the study of standing waves for a mixture of
Bose-Einstein condensates of ¢ different hyperfine states which
overlap in space, see for example:

B (1) - Esry, B. D.; Greene, Chris H.; Burke, Jr., James P.; Bohn,
John L: Hartree-Fock theory for double condensates, Phys. Rev.
Lett. 78 (1997), 3594-3597.

» We consider the case in which the interaction between particles in
the same state is attractive (y; > 0) and the interaction between
particles in any two different states is repulsive (\; < 0).
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» We provide nonradial solutions with positive and sign-changing
components:

Theorem (1) - (Multiplicity of Semi-Positive Solutions)

Let N =4 or N > 6. For any given 0 < m </, the system (Sc,¢) has a
solution w = (wa, ..., ws) whose first m components wi, ..., w, are positive
and whose last £ — m components W1, ..., w, are nonradial and change

sign. Furthermore, w satisfies

wi(z1, 22, x) = wi(e¥z1,e% 20, gx)  forall ¥ €[0,2n), g€ O(N —4), i=1,...,¢,
wi(z1, 22, x) = wi(z2, z1, X) if i=1,...,m,
wi(z1, 22, x) = —wi(22, z1, X) if i=m+1,...,¢,
(11)
for all (z1,22,x) € C x C x RVN=* = R", and it has a least energy among all
nontrivial solutions with these symmetry properties.
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» It is impossible to derive a similar result for N = 5;

» A key role is played by the space of fixed points of the subgroup G
of symmetries that guarantees (1.1):

Theorem (2) - (Existence/Nonexistence of a Least Energy Solution)

Let ¢ > 2. System (S ¢) has a least energy solution satisfying (1.1) if
and only if Fix(G) := {x e RN : gx =x V g € G} = {0}.

» For N =5 there is no such a subgroup G of symmetries satisfying
Fix(G) = {0}.
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Let N =4 or N > 6, and Q = Bi(0). Then, for any given 0 < m < £ and any
sequence (k) of positive numbers converging to zero, there exists solution

ux = (Uik, . . ., Uek) to the system (Saq,c,) whose first m components are
positive and whose last / — m components are nonradial and change sign,
with the following limit profile:

There exists a solution w = (w1, ..., w;) to the system (Soo,¢) such that, after
passing to a subsequence, I|m Hu,k —wi(e, )|le, =0 for alli=1,... ¢

The first m components of w are positive, its last { — m components are
nonradial and change sign, and w satisfies (1 1). Therefore,

Jim Z 1Tz, = Z lwil|* =
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Theorem (4) - (Uncoupled Spikes Solutions)
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Vi,...,Vm are positive and radial functions, while vy11,..., ve are sign-
changing, nonradial functions and for (z1,z2,x) € C x C x R¥™* they satisfy
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» The solutions of system (Sq ) given by Theorem 4 behave as
expected in the repulsive case \; < 0:

They concentrate at points that are far from each other and
from the boundary of the ball;

» The solutions given by Theorem 3 behave as in the attractive case
Ajj > 0: all components concentrate at the origin;

» The sign of the interaction coefficient )\; is not determinant in
the segregation behavior of higher energy solutions;

» Since they have higher energy, they enjoy more symmetries than
those given by Theorem 4.
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» These are the first examples in the literature that show this kind
of asymptotic behavior for the elliptic system (Sq . );

» As ¢ — 0 the components of the solution of the system
concentrate at fixed points of the group action:

» If the space of fixed points is trivial, all components will necessarily
concentrate at the origin;

» If the fixed-point space has positive dimension, all components will
move far away from each other;

» For N = 3 there are no symmetries with the properties required to
produce nonradial sign-changing solutions;
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» Let © be an open subset of RV which is G-invariant. A function
u:© — Ris ¢g-equivariant if u(gx) = ¢(g)u(x) Vg € G, x € O;

» Define H}(©)? := {u € H}(©) : u is ¢-equivariant}. Assumption
(A1) guarantees that H3(©)? has infinite dimension;

» If ¢ =1 is the trivial homomorphism, then H}(©)? is the space of
G-invariant functions in H3(©);

» If ¢ is surjective, then every nontrivial function u € H}(©)? is
nonradial and changes sign.
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Relevant Examples

(i) Let T be the group generated by {e!” : ¥ € [0,27)} U {7} acting on
RN by

) )

ei19(21,22,x) = (ei" 7y, el 7,x) and 7(z1,2,x) = (22, 21, X)

for all (z1,22,x) ECx Cx RN=*=RN and ¢ : T — Z, be the
homomorphism given by ¢(el”) := 1 and ¢(7) := —1.
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for all (z1,22,x) ECx Cx RN=*=RN and ¢ : T — Z, be the
homomorphism given by ¢(el”) := 1 and ¢(7) := —1.

Hence (A1) is satisfied since the kernel of ¢ is the group
K? = {1 9 € [0,27)}
and the point xp = (1,0,0) € C x C x RN=* is such that
K?xo = {(¢'?,0,0) : ¥ € [0,27)} and
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g(z1,22,x) = (71, 22, gX) V (z1,22,x) € Cx C x RN=* =RV,
Let ¢ : G — Z, be the homomorphism given by ¢(e'?) := 1,
o(7) :=—1 and ¢(g) :=1 for all g € O(N — 4). Then,
K? = ker¢ = {eiﬂ c9 €[0,2m)} x O(N — 4)
and, for xo = (1,0,0) € C x C x RN=* one has

K?xg={(e"",0,0): ¥ € [0,2m)} and

Gxo = {(€¥,0,0) : ¥ € [0,2m)} U {(0,€!?,0) : ¥ € [0,27)},
so (A1) is satisfied.
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Variational Setting

» Fix a closed subgroup G of O(N) and, for each i=1,...,¢, a
continuous homomorphism ¢; : G — Zj satisfying (A1);
» If © is a G-invariant open subset of RV, we consider the system
‘
—2Du;j + v = il P20+ XBiilug] | ui| P2,
Jj=1 (Sg 5)
i#i ,
U,‘EH&(@)&, U,'7'507 I.:].,...,g,
with € > 0, Wi > 0, /\,'j = )\j,' <0, Oé,‘j,ﬁ,‘j > 1, Qjj = ﬂj,‘ and
Qjj +Bi=p€c (2,2*)
» Set H'(O) := H}(O)? x --- x H}(©)?, and denote an element in
H'(©) by u= (uy,...,u). For each £ > 0 we define the equivalent

norms
’ 1/2 .

fullee = (Yo Nul2)  where 2= 5 [ [P +4f].
i—1 g RN
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Variational Setting

» Consider the functlonal JE HY©) — R given by
¢ :
1 «@
Znu, o2 [l Iy L s,
= RN RN

ij= 1
which is of class C?.

J#i
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» Since \j = \ji, Bij = «aji and «j + Bij = p, its partial derivatives are
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AT (u)v = — [/ (e°Vu; - Vv + ujv)
eN L Jpn
¢
= [ a2t =3 [ sl (21)
RN =i RN
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for v e Hi(©)% and i=1,...,¢.
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Variational Setting

» Consider the functlonal JE HY©) — R given by
¢ :
1 «@
Znu, o2 [l Iy L s,
= RN RN

ij= 1
which is of class C?.

J#i

» Since \j = \ji, Bij = «aji and «j + Bij = p, its partial derivatives are

1
AT (u)v = — [/ (e°Vu; - Vv + ujv)
eN L Jpn
¢
= [ a2t =3 [ sl (21)
RN =i RN
J#i

for v e Hi(©)% and i=1,...,¢.

» By the principle of symmetric criticality, the solutions to system (Sg )
are the critical points of 7 whose components u; are nontrivial.
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The Nehari-Type Set

» All solutions belong to the Nehari-type set

NY©) = {u e HY(O): ui #£0, BT )y =0, Vi=1,... z}
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The Nehari-Type Set

» All solutions belong to the Nehari-type set

NE(©) = {u e HY O) i #£0, ;T (u)u; =0, Vi=1,... (}
» Note that

14
1 1
4 ij i
on oy = a2 [l =3 2 [ sl
J:

J#i
(2.2)
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The Nehari-Type Set

» All solutions belong to the Nehari-type set

NY©) = {u e HY(O): ui #£0, BT )y =0, Vi=1,... z}

» Note that
1 1
7t =y lI? Al Bl gy || gy | Bii
07w =l ~ = [ luil? —§=j/ Nl Ll
" (2.2)
2.2
» Define
¢ : ¢
2(9) = f :
() u€,‘l\pf(@)j£ ()
» From (2.1), if u= (u1, ta, ..., u;) € NY(O) one sees that
¢
) p—2 p—2
Tiu) === llul?= lull7 - (2:3)

2p 2p

i=1
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The Existence of a Least Energy Solution

> A solution to the system (S ) such that 7/(u) = c/(©) is called a
least energy solution to (Scﬁ,a)-
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The Existence of a Least Energy Solution

> A solution to the system (S ) such that 7/(u) = c/(©) is called a
least energy solution to (Scﬁ,a)-

Theorem (5) - (Existence of minimizers)

If © is a bounded G-invariant domain in RN, then, for each ¢ > 0,
system (Sg .) has a least energy solution.
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The Limit System




Establishing the Nehari Levels

» Let ¢; and G satisfy (A1) and also the following property:
(A2) For every x € RY, the G-orbit of x is either infinite, or Gx = {x}.
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¢
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Establishing the Nehari Levels

» Let ¢; and G satisfy (A1) and also the following property:
(A2) For every x € RY, the G-orbit of x is either infinite, or Gx = {x}.

» The limit system under the ¢;-equivariant component functions is

¢
—Au; + uj = piluP~?u; + Z)\,-jﬂ,-j|uj|“"f uiPi=2u;,
(5%.0)
J#i ’
u; € HI(RN)G’)’, U,'750, 1<i<Vt.

» Set H! = HYRV)? x --- x HY(RN)?:, 7L =7J! H* - R and
NE = NE(RN) and also let ¢/, ;= inf T (u).

ueNt

» Foreachi=1,...,/, consider the problem

—Au+ u = pilulP2u,
ue HY(RM)?, u+#0.
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Establishing the Nehari Levels

» Its solutions are the critical points of J; : HY(RV)% — R given by
' 1
Ji(u) =3 / (|Vu]® + v*) — 7/ |ulP, and belong to the Nehari
JRN P Jrn

manifold NV; := {u € HY(RN)? : u #0, J/(u)u=0}. We set

Ci ‘= inf J,‘(LI).

ueN;
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» Its solutions are the critical points of J; : HY(RV)% — R given by
' 1
Ji(u) =3 / (|Vu]® + v*) — 7/ |ulP, and belong to the Nehari
JRN P Jrn

manifold NV; := {u € HY(RN)? : u #0, J/(u)u=0}. We set

G = ulgif/ Ji(u).

» A solution u to (Si,z) satisfying 7% (u) = ¢’ is called a least
energy solution to (Si()) Similarly, a solution u to (P?)
satisfying Ji(u) = ¢; is called a least energy solution to (Pf/”)
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Establishing the Nehari Levels

» Its solutions are the critical points of J; : HY(RV)% — R given by
' 1
Ji(u) =3 / (|Vu]® + v*) — 7/ |ulP, and belong to the Nehari
JRN P Jrn

manifold NV; := {u € HY(RN)? : u #0, J/(u)u=0}. We set

= o )

» A solution u to (82, ,) satisfying 7 (u) = c_ is called a least
energy solution to (Si.e)- Similarly, a solution u to (P?)
satisfying Ji(u) = ¢; is called a least energy solution to (Pf/”)

» Concerning to the fundamental role of the G-fixed-point space
Fix(G) .= {x € R : gx = x for all g € G}
we prove the following results.
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The Comparison of the Nehari Levels

Proposition (6) - (Comparing the Nehari Levels)

The following statements hold true:
¢

(i) & > Zc;.
i=1

(ii) If Fix(G) has positive dimension, then ¢/, = Z @
i=1
‘
(iii) If¢>2 and ¢, = Z ci, then ct, is NOT attained.
i=1
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Behavior of the Minimizing Sequence of System (S

Theorem (7) - (The Minimizing Sequences of System (Siz))
Let £ > 2 and ui = (uik, . . -, ugk) € N be such that T (u) — c4..

(1) IfFix(G) = {0}, then there exists a least energy solution
w = (wy,...,wp) to the system (SfO ;) such that, after passing to a
subsequence, klim |luxk —wil]| =0 forall i=1,...,¢, and
—00
¢
ct > Z ¢;. Moreover, if uy, > 0 for all k € N, then w; > 0.

00
i=1
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Behavior of the Minimizing Sequence of System (S

Theorem (7) - (The Minimizing Sequences of System (Siz))
Let £ > 2 and ui = (uik, . . -, ugk) € N be such that T (u) — c4..

(1) IfFix(G) = {0}, then there exists a least energy solution
w = (wy,...,wp) to the system (SfO ;) such that, after passing to a
subsequence, klim lux — w;|| =0 forall i=1,...,¢ and
—00
¢
ct > Z ¢;. Moreover, if uy, > 0 for all k € N, then w; > 0.
i=1
(1) Ifdim(Fix(G)) > 0, then, for each i =1,...,¢, there exist (&) in
Fix(G) and a least energy solution v; to the problem (P?') such
that, after passing to a subsequence, klim |€ix — &jk| = o0 if i #j,
—00

,
kIme luw —vi( - —€x)|| =0 foralli,j=1,...,¢, and c’, = ;c;.
Moreover, if uy. > 0 for all k € N, then v; > 0.
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Behavior of the Minimizing Sequence of System (S

» Theorem 2 follows straightway from Proposition 6 and Theorem 7,
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» Theorem 2 follows straightway from Proposition 6 and Theorem 7,

» Theorem 1 follows by applying Theorem 7 for a suitable subgroup G
and its homomorphisms ¢;:

Proof of Theorem 1.

> The group G :=T x O(N — 4) introduced in Example (i) satisfies (Az) if
either N=4 or N > 6, and Fix(G) = {0};
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> Fori=1,...,mweset »; =1, and for i=m+1,...,¢ we also take
¢i = ¢ as in Example (ii);
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to the system (S ,¢) satisfying (1.1);

> By standard arguments we may take wi, ..., wy, to be positive;
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Behavior of the Minimizing Sequence of System (S i

» Theorem 2 follows straightway from Proposition 6 and Theorem 7,

» Theorem 1 follows by applying Theorem 7 for a suitable subgroup G
and its homomorphisms ¢;:

Proof of Theorem 1.

> The group G :=T x O(N — 4) introduced in Example (i) satisfies (Az) if
either N =4 or N > 6, and Fix(G) = {0};

> Fori=1,...,mweset »; =1, and for i=m+1,...,¢ we also take
¢i = ¢ as in Example (ii);
> Applying Theorem 7 we obtain a least energy solution w = (w, ..., wp)

to the system (S ,¢) satisfying (1.1);

> By standard arguments we may take wi, ..., wy, to be positive;

> The symmetries ensure that the last / — m components are nonradial
and change sign.

O
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The Asymptotic Behavior of
Minimizers




The Limit Profile of the Least Energy Solutions

> As before we assume that (Aj) — (Az) are satisfied;
» Qs a G-invariant bounded domain in R" and that 0 € Q.
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> As before we assume that (Aj) — (Az) are satisfied;
» Qs a G-invariant bounded domain in R" and that 0 € Q.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (i) of positive numbers converging to zero,
there exists a least energy solution uy, = (u1k,

..., Upk) to the system
(Sg’gk) with the following limit profile:
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The Limit Profile of the Least Energy Solutions

> As before we assume that (Aj) — (Az) are satisfied;
» Qs a G-invariant bounded domain in R" and that 0 € Q.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (i) of positive numbers converging to zero,
there exists a least energy solution uy = (u1k, ..., Ug) to the system
(& .,) with the following limit profile:

(1) IfFix(G) = {0}, then there exists a least energy solution
w = (w1,...,wp) to the system (Si,z) such that, after passing to a
subsequence,

lim ||uix — W,‘(S;l e, =0 forall i=1,...,¢,
k— 00
.y ¢
and lim c.(Q) = cs-
e—0

Moreover, w; > 0 if uyx > 0 for all k € N.
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The Limit Profile of the Least Energy Solutions

(I If dim(Fix(G)) > 0, then, for each i =1,...,¢, there exist a
sequence (Ci) in QN Fix(G) and a least energy solution v; to the
problem (P{") such that, after passing to a subsequence,
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The Limit Profile of the Least Energy Solutions

(I If dim(Fix(G)) > 0, then, for each i =1,...,¢, there exist a
sequence (Ci) in QN Fix(G) and a least energy solution v; to the
problem (P{") such that, after passing to a subsequence,

lim e 'dist(Ck, 0Q) = 00,  lim . |Cik — Cix| = o0 if i # J,
k— 00 k— o0

lim flux —vi(e (- — C))lle, =0, for all i,j=1,...¢,
k—o00

and I|mc g Ci-

Moreover, v; > 0 if uy > 0 for all k € N.
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Proving our Main Results

» We derive Theorems 3 and 4 from Theorem 8.
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» We derive Theorems 3 and 4 from Theorem 8.
Proof of Theorem 3.

> The group G :=T x O(N — 4) satisfies (Az) if N =4 or N > 6, and
Fix(G) = {0} and we choose the homomorphisms ¢; as in Theorem 1;

> By Theorem 5 there exist a least energy solution Uy = (Ui, - . ., Uek) to
the system (3§1<0),5k) and by Theorem 8 a least energy solution
w = (wi,...,wp) to the system (S ¢) satisfying (1.1);

> After passing to a subsequence, kIme G — wi(er - )|ls, =0 for all
i=1,...,¢, and

||m Z |2, = ||m

P ct(By(0)) = = > il =
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the system (3§1<0),5k) and by Theorem 8 a least energy solution
w = (wi,...,wp) to the system (S ¢) satisfying (1.1);

> After passing to a subsequence, kIme G — wi(er - )|ls, =0 for all
i=1,...,¢, and

||m Z |2, = ||m

> By standard arguments we may take positive Uik, ..., Unk. Then,

4
2 =
S5 (Bi0) = Sk = 3wl =,
i=1

Wi, ..., Wy are also positive;
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Proving our Main Results

» We derive Theorems 3 and 4 from Theorem 8.
Proof of Theorem 3.

> The group G :=T x O(N — 4) satisfies (Az) if N =4 or N > 6, and
Fix(G) = {0} and we choose the homomorphisms ¢; as in Theorem 1;

> By Theorem 5 there exist a least energy solution Uy = (Ui, - . ., Uek) to
the system (3§1<0),5k) and by Theorem 8 a least energy solution
w = (wi,...,wp) to the system (S ¢) satisfying (1.1);

> After passing to a subsequence, kIme G — wi(er - )|ls, =0 for all
i=1,...,¢, and

||m Z |2, = ||m

> By standard arguments we may take positive Uik, ..., Unk. Then,

4
2 =
S5 (Bi0) = Sk = 3wl =,
i=1

Wi, ..., Wy are also positive;
> The symmetries ensure that the last / — m components of Uy and w are

O

nonradial and change sign.
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Proving our Main Results

Proof of Theorem 4.

> The group G :=T in Example (/) satisfies (Az), and
Fix(G) = {0} x RV=* has positive dimension if N > 5;
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> The group G :=T in Example (/) satisfies (Az), and
Fix(G) = {0} x RV=* has positive dimension if N > 5;

> Fori=1,...,mwetake ¢; =1, and for i = m+1,...,¢ we take
¢; := ¢ as in Example (/);

> By Theorems 5 and 8, there exist a least energy solution
u, = (u1k, . - ., Ugk) to the system (Sgl(o),ek) and, for each
i=1,...,¢ asequence (Ci) in B1(0) NFix(G) and a least energy
solution V; to the problem (P%);
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Proving our Main Results

Proof of Theorem 4.

> The group G :=T in Example (/) satisfies (Az), and
Fix(G) = {0} x RV=* has positive dimension if N > 5;

> Fori=1,...,mwetake ¢; =1, and for i = m+1,...,¢ we take
¢; := ¢ as in Example (/);

> By Theorems 5 and 8, there exist a least energy solution
u, = (u1k, . - ., Ugk) to the system (Sgl(o),ek) and, for each
i=1,...,¢ asequence (Ci) in B1(0) NFix(G) and a least energy
solution V; to the problem (P%);

> After passing to a subsequence,

lim e 'dist(Cx, B1(0)) = oo,  lim . |Cik — Cix| = o0 if i # J,
k— 00 k—o0

klim |uik — V,-(e;l( - = Cik)lls, =0, forall i,j=1,...,¢, and
—>00

¢ ¢ ¢
. . 2p 2p ~
2 ¢ - 12 =
kl' n 21 [ uirllz, = Sl' 0p— 2Cg(Bl(0)) = p—2 2—1 G = 21 [Vill]* = em.
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Proving our Main Results

Continuation of the Proof of Theorem 4.

> As before, vi,...,Vn are also positive and since (P;) has a unique
positive radial solution v;, any other positive solution is a translation of it;
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Continuation of the Proof of Theorem 4.
> As before, vi,...,Vn are also positive and since (P;) has a unique
positive radial solution v;, any other positive solution is a translation of it;

> Ifie{m+1,...,£}, then v; € HY(R")? with ¢ as in Example (i), i.e., v
satisfies Vi(z1, 2, x) = V,-(ewzl,e“’zz,x) for all ¥ € [0,27) and
Vi(z1, 22, x) = —Vi(2z2, z1, x), for all (z1,z2,x) € C x C x RN-4.
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> There exists ¥; € Fix(G) such that vi(y) := vi(y + ¢;) satisfies (1.2);

> Let i := i + ex?i, so that vi(y) :=Vvi(y + ;) isradial if i=1,...,m
and it satisfies (1.2) if i=m+1,...,¢;
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Proving our Main Results

Continuation of the Proof of Theorem 4.

>

As before, Vi, ..., Vn are also positive and since (P;) has a unique
positive radial solution v;, any other positive solution is a translation of it;
Ific {m+1,...,£}, then v; € H*(R")? with ¢ as in Example (i), i.e., v;
satisfies Vi(z1, 2, x) = V,-(ewzl,emzz,x) for all ¥ € [0,27) and
Vi(z1, 22, x) = —Vi(2z2, z1, x), for all (z1,z2,x) € C x C x RN-4.

There exists 9; € Fix(G) such that vj(y) := vi(y + ;) satisfies (1.2);
Let & = Cik + Vi, so that vi(y) :=vi(y +¥;) isradial if i=1,...,m
and it satisfies (1.2) if i=m+1,...,¢;

As e — 0, we have that &j € Bi(0) for k large enough. From the

corresponding statements for (i and v; one derives the remaining
conclusions involving the component functions;
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Proving our Main Results

Continuation of the Proof of Theorem 4.
> As before, vi,...,Vn are also positive and since (P;) has a unique
positive radial solution v;, any other positive solution is a translation of it;

> Ifie{m+1,...,£}, then v; € HY(R")? with ¢ as in Example (i), i.e., v
satisfies Vi(z1, 2, x) = V,-(ewzl,emzz,x) for all ¥ € [0,27) and
Vi(z1, 22, x) = —Vi(2z2, z1, x), for all (z1,z2,x) € C x C x RN-4.

> There exists ¥; € Fix(G) such that vi(y) := vi(y + ¢;) satisfies (1.2);

> Let i := i + ex?i, so that vi(y) :=Vvi(y + ;) isradial if i=1,...,m
and it satisfies (1.2) if i=m+1,...,¢;

> As g, — 0, we have that &y € Bi1(0) for k large enough. From the
corresponding statements for (i and v; one derives the remaining
conclusions involving the component functions;

> The inequality ¢, < ¢, follows immediately from Proposition 6.
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