

Coupled and Uncoupled Sign-changing Spikes of Singularly Perturbed Elliptic Systems

Mayra Soares - Unam

(In colaboration with Prof. Mónica Clapp - Unam)

December 16, 2021

Seminário de EDPs (IMECC) - Unicamp

Outline

- 1. Introduction
- 2. Theoretical Background
- 3. The Limit System
- 4. The Asymptotic Behavior of Minimizers

► We study the existence and asymptotic behavior of semi-positive solutions, i. e. having positive and sign-changing components to the singularly perturbed system of elliptic equations

$$\begin{cases}
-\varepsilon^2 \Delta u_i + u_i = \mu_i |u_i|^{p-2} u_i + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}-2} u_i, \\ u_i \in H_0^1(\Omega), \quad u_i \neq 0, \qquad i = 1, \dots, \ell,
\end{cases}$$

$$(S_{\Omega,\varepsilon})$$

- $lackbox{} \varepsilon > 0$ is a small parameter, Ω is a bounded smooth domain in \mathbb{R}^N ,
- $$\begin{split} \blacktriangleright \ \ \mathsf{N} \geq \mathsf{4}, \quad \mu_{\mathsf{i}} > \mathsf{0}, \quad \lambda_{\mathsf{i}\mathsf{j}} = \lambda_{\mathsf{j}\mathsf{i}} < \mathsf{0}, \quad \alpha_{\mathsf{i}\mathsf{j}}, \beta_{\mathsf{i}\mathsf{j}} > \mathsf{1}, \quad \alpha_{\mathsf{i}\mathsf{j}} = \beta_{\mathsf{j}\mathsf{i}}, \\ \alpha_{\mathsf{i}\mathsf{j}} + \beta_{\mathsf{i}\mathsf{j}} = \mathsf{p} \in (\mathsf{2}, \mathsf{2}^*), \end{split}$$

and $2^* := \frac{2N}{N-2}$ is the critical Sobolev exponent.

▶ If $\Omega = B_1(0)$ we obtain solutions exhibiting two different types of asymptotic behavior as $\varepsilon \to 0$:

- ▶ If $\Omega = B_1(0)$ we obtain solutions exhibiting two different types of asymptotic behavior as $\varepsilon \to 0$:
 - (1): the limit profile is a rescaling of a solution with positive and nonradial sign-changing components of the limit coupled system

$$\begin{cases} -\Delta u_i + u_i = \mu_i |u_i|^{p-2} u_i + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}-2} u_i, \\ u_i \in H^1(\mathbb{R}^N), \quad u_i \neq 0, \qquad i = 1, \dots, \ell. \end{cases}$$
 (S_{\infty},)

- ▶ If $\Omega = B_1(0)$ we obtain solutions exhibiting two different types of asymptotic behavior as $\varepsilon \to 0$:
 - (1): the limit profile is a rescaling of a solution with positive and nonradial sign-changing components of the limit coupled system

$$\begin{cases} -\Delta u_{i} + u_{i} = \mu_{i} |u_{i}|^{p-2} u_{i} + \sum_{\substack{j=1 \ j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij}-2} u_{i}, \\ u_{i} \in H^{1}(\mathbb{R}^{N}), \quad u_{i} \neq 0, \qquad i = 1, \dots, \ell. \end{cases}$$
 (S_{\infty},)

(2): the limit profile is a solution of the uncoupled system, i.e., after rescaling and translation, the limit profile of the *i*-th component is a positive or a nonradial sign-changing solution to the equation

$$-\Delta u_i + u_i = \mu_i |u_i|^{p-2} u_i, \qquad u_i \in H^1(\mathbb{R}^N), \qquad u_i \neq 0.$$

3

Physical Motivation

This system arises as a model for various physical phenomena, in particular in the study of standing waves for a mixture of Bose-Einstein condensates of ℓ different hyperfine states which overlap in space, see for example:

Physical Motivation

▶ This system arises as a model for various physical phenomena, in particular in the study of standing waves for a mixture of Bose-Einstein condensates of ℓ different hyperfine states which overlap in space, see for example:

(1) - Esry, B. D.; Greene, Chris H.; Burke, Jr., James P.; Bohn, John L: Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597.

Physical Motivation

▶ This system arises as a model for various physical phenomena, in particular in the study of standing waves for a mixture of Bose-Einstein condensates of ℓ different hyperfine states which overlap in space, see for example:

- (1) Esry, B. D.; Greene, Chris H.; Burke, Jr., James P.; Bohn, John L: Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597.
- ▶ We consider the case in which the interaction between particles in the same state is attractive ($\mu_i > 0$) and the interaction between particles in any two different states is repulsive ($\lambda_{ii} < 0$).

- ▶ Lin and Wei (2005) (for N = 2,3)
 - Described the behavior of **positive least energy solutions** for the system $(S_{\Omega,\varepsilon})$ with cubic nonlinearity $(\alpha_{ij} = \beta_{ij} = 2)$ as $\varepsilon \to 0$;

- ▶ Lin and Wei (2005) (for N = 2,3)
 - Described the behavior of **positive least energy solutions** for the system $(S_{\Omega,\varepsilon})$ with cubic nonlinearity $(\alpha_{ij} = \beta_{ij} = 2)$ as $\varepsilon \to 0$;
 - Showed that each component is a *spike*, i.e., **a rescaling of the positive ground state solution** to the problem

$$\begin{cases} -\Delta u + u = \mu_i |u|^{p-2} u, \\ u \in H^1(\mathbb{R}^N), \quad u \neq 0. \end{cases}$$
 (\mathcal{P}_i)

- ▶ Lin and Wei (2005) (for N = 2,3)
 - Described the behavior of **positive least energy solutions** for the system $(S_{\Omega,\varepsilon})$ with cubic nonlinearity $(\alpha_{ij} = \beta_{ij} = 2)$ as $\varepsilon \to 0$;
 - Showed that each component is a *spike*, i.e., **a rescaling of the positive ground state solution** to the problem

$$\begin{cases} -\Delta u + u = \mu_i |u|^{p-2} u, \\ u \in H^1(\mathbb{R}^N), \quad u \neq 0. \end{cases}$$
 (\mathcal{P}_i)

(2) - Lin, Tai-Chia; Wei, Juncheng: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 4, 403-439.

- ▶ Bartsch and Willem (1993) (for N = 4 and $N \ge 6$)
- ▶ Lorca and Ubilla (2004) (for N = 5)
- ▶ Clapp and Srikanth (2016) (for $N \ge 4$)
 - Established the existence of **nonradial sign-changing solutions** to (\mathcal{P}_i) taking advantage of some **symmetry properties** of \mathbb{R}^N .

- ▶ Bartsch and Willem (1993) (for N = 4 and $N \ge 6$)
- ▶ Lorca and Ubilla (2004) (for N = 5)
- ▶ Clapp and Srikanth (2016) (for $N \ge 4$)
 - Established the existence of **nonradial sign-changing solutions** to (\mathcal{P}_i) taking advantage of some **symmetry properties** of \mathbb{R}^N .
 - (3) Bartsch, Thomas; Willem, Michel: Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. 117 (1993), no. 2, 447-460.
 - (4) Lorca, Sebastián; Ubilla, Pedro: Symmetric and nonsymmetric solutions for an elliptic equation on \mathbb{R}^N . Nonlinear Anal. 58 (2004), no. 7-8, 961-968.
 - (5) Clapp, Mónica; Srikanth, P. N.: Entire nodal solutions of a semilinear elliptic equation and their effect on concentration phenomena. J. Math. Anal. Appl. 437 (2016), no. 1, 485-497.

About System $(\mathcal{S}_{\infty,\ell})$

▶ Lin and Wei (2005) - It does NOT have a ground state solution;

About System $(\mathcal{S}_{\infty,\ell})$

- ▶ Lin and Wei (2005) It does NOT have a ground state solution;
- ➤ Sirakov (2007) It does have a positive least energy radial solution;

About System $(S_{\infty,\ell})$

- ▶ Lin and Wei (2005) It does NOT have a ground state solution;
- ➤ Sirakov (2007) It does have a positive least energy radial solution;
- ▶ Sato and Wang (2015) There exists a least energy radial solution with cubic nonlinearity (hence, $N \le 3$) with positive and sign-changing components.

About System $(S_{\infty,\ell})$

- ▶ Lin and Wei (2005) It does NOT have a ground state solution;
- Sirakov (2007) It does have a positive least energy radial solution;
- Sato and Wang (2015) There exists a least energy radial solution with cubic nonlinearity (hence, N ≤ 3) with positive and sign-changing components.
 - (6) Lin, Tai-Chia; Wei, Juncheng: Ground state of N coupled nonlinear Schrödinger equations in \mathbb{R}^n , $n \leq 3$. Comm. Math. Phys. 255 (2005), no. 3, 629-653.
 - (7) Sirakov, Boyan: Least energy solitary waves for a system of nonlinear Schrödinger equations in Rn. Comm. Math. Phys. 271 (2007), no. 1, 199-221.
 - (8) Sato, Yohei; Wang, Zhi-Qiang: On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete Contin. Dyn. Syst. 35 (2015), no. 5, 2151-2164.

Multiplicity of Semi-Positive Solutions to System $(\mathcal{S}_{\infty,\ell})$

► We provide **nonradial** solutions with **positive and sign-changing** components:

Multiplicity of Semi-Positive Solutions to System $(S_{\infty,\ell})$

► We provide **nonradial** solutions with **positive and sign-changing** components:

Theorem (1) - (Multiplicity of Semi-Positive Solutions)

Let N=4 or $N\geq 6$. For any given $0\leq m\leq \ell$, the system $(\mathcal{S}_{\infty,\ell})$ has a solution $\mathbf{w}=(w_1,\ldots,w_\ell)$ whose first m components w_1,\ldots,w_m are positive and whose last $\ell-m$ components w_{m+1},\ldots,w_ℓ are nonradial and change sign. Furthermore, \mathbf{w} satisfies

Multiplicity of Semi-Positive Solutions to System $(S_{\infty,\ell})$

► We provide **nonradial** solutions with **positive and sign-changing** components:

Theorem (1) - (Multiplicity of Semi-Positive Solutions)

Let N=4 or $N\geq 6$. For any given $0\leq m\leq \ell$, the system $(\mathcal{S}_{\infty,\ell})$ has a solution $\mathbf{w}=(w_1,\ldots,w_\ell)$ whose first m components w_1,\ldots,w_m are positive and whose last $\ell-m$ components w_{m+1},\ldots,w_ℓ are nonradial and change sign. Furthermore, \mathbf{w} satisfies

$$\begin{cases} w_{i}(z_{1}, z_{2}, x) = w_{i}(e^{i\vartheta}z_{1}, e^{i\vartheta}z_{2}, gx) & \text{for all } \vartheta \in [0, 2\pi), \ g \in O(N-4), \ i = 1, \dots, \ell, \\ w_{i}(z_{1}, z_{2}, x) = w_{i}(z_{2}, z_{1}, x) & \text{if } i = 1, \dots, m, \\ w_{i}(z_{1}, z_{2}, x) = -w_{i}(z_{2}, z_{1}, x) & \text{if } i = m+1, \dots, \ell, \end{cases}$$

$$(1.1)$$

for all $(z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N$, and it has a least energy among all nontrivial solutions with these symmetry properties.

Nonexistence Result for N = 5

▶ It is **impossible** to derive a similar result for N = 5;

Nonexistence Result for N=5

- ▶ It is **impossible** to derive a similar result for N = 5;
- ▶ A key role is played by the **space of fixed points** of the subgroup *G* of symmetries that guarantees (1.1):

Nonexistence Result for N=5

- ▶ It is **impossible** to derive a similar result for N = 5;
- ▶ A key role is played by the **space of fixed points** of the subgroup G of symmetries that guarantees (1.1):

Theorem (2) - (Existence/Nonexistence of a Least Energy Solution)

Let $\ell \geq 2$. System $(S_{\infty,\ell})$ has a least energy solution satisfying (1.1) if and only if $\operatorname{Fix}(G) := \{x \in \mathbb{R}^N : gx = x \ \forall \ g \in G\} = \{0\}.$

Nonexistence Result for N=5

- ▶ It is **impossible** to derive a similar result for N = 5;
- ▶ A key role is played by the **space of fixed points** of the subgroup G of symmetries that guarantees (1.1):

Theorem (2) - (Existence/Nonexistence of a Least Energy Solution)

Let $\ell \geq 2$. System $(S_{\infty,\ell})$ has a least energy solution satisfying (1.1) if and only if $\operatorname{Fix}(G) := \{x \in \mathbb{R}^N : gx = x \ \forall \ g \in G\} = \{0\}.$

► For N = 5 there is no such a subgroup G of symmetries satisfying $Fix(G) = \{0\}.$

▶ Set $\|u\|_{\varepsilon}^2 := \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \left[\varepsilon^2 |\nabla u|^2 + u^2 \right]$ and $\|u\| := \|u\|_1$ for $\varepsilon > 0$ and $u \in H^1(\mathbb{R}^N)$, we obtain **two different** asymptotic behaviors as $\varepsilon \to 0$:

▶ Set $\|u\|_{\varepsilon}^2 := \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \left[\varepsilon^2 |\nabla u|^2 + u^2 \right]$ and $\|u\| := \|u\|_1$ for $\varepsilon > 0$ and $u \in H^1(\mathbb{R}^N)$, we obtain **two different** asymptotic behaviors as $\varepsilon \to 0$:

Theorem (3) - (Coupled Spikes Solutions)

Let N = 4 or $N \ge 6$, and $\Omega = B_1(0)$. Then, for any given $0 \le m \le \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\widehat{\mathbf{u}}_k = (\widehat{u}_{1k}, \dots, \widehat{u}_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell - m$ components are nonradial and change sign, with the following limit profile:

▶ Set $\|u\|_{\varepsilon}^2 := \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \left[\varepsilon^2 |\nabla u|^2 + u^2 \right]$ and $\|u\| := \|u\|_1$ for $\varepsilon > 0$ and $u \in H^1(\mathbb{R}^N)$, we obtain **two different** asymptotic behaviors as $\varepsilon \to 0$:

Theorem (3) - (Coupled Spikes Solutions)

Let N=4 or $N\geq 6$, and $\Omega=B_1(0)$. Then, for any given $0\leq m\leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\widehat{\mathbf{u}}_k=(\widehat{u}_{1k},\ldots,\widehat{u}_{\ell k})$ to the system $(\mathcal{S}_{\Omega,\varepsilon_k})$ whose first m components are positive and whose last $\ell-m$ components are nonradial and change sign, with the following limit profile:

There exists a solution $\mathbf{w}=(w_1,\ldots,w_\ell)$ to the system $(\mathcal{S}_{\infty,\ell})$ such that, after passing to a subsequence, $\lim_{k\to\infty}\|\widehat{u}_{ik}-w_i(\varepsilon_k^{-1}\cdot)\|_{\varepsilon_k}=0$ for all $i=1,\ldots,\ell$.

▶ Set $\|u\|_{\varepsilon}^2 := \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \left[\varepsilon^2 |\nabla u|^2 + u^2 \right]$ and $\|u\| := \|u\|_1$ for $\varepsilon > 0$ and $u \in H^1(\mathbb{R}^N)$, we obtain **two different** asymptotic behaviors as $\varepsilon \to 0$:

Theorem (3) - (Coupled Spikes Solutions)

Let N=4 or $N\geq 6$, and $\Omega=B_1(0)$. Then, for any given $0\leq m\leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\widehat{\mathbf{u}}_k=(\widehat{u}_{1k},\ldots,\widehat{u}_{\ell k})$ to the system $(\mathcal{S}_{\Omega,\varepsilon_k})$ whose first m components are positive and whose last $\ell-m$ components are nonradial and change sign, with the following limit profile:

There exists a solution $\mathbf{w}=(w_1,\ldots,w_\ell)$ to the system $(\mathcal{S}_{\infty,\ell})$ such that, after passing to a subsequence, $\lim_{k\to\infty}\|\widehat{u}_{ik}-w_i(\varepsilon_k^{-1}\cdot)\|_{\varepsilon_k}=0$ for all $i=1,\ldots,\ell$.

The first m components of \mathbf{w} are positive, its last $\ell-m$ components are nonradial and change sign, and \mathbf{w} satisfies (1.1). Therefore,

$$\lim_{k\to\infty}\sum_{i=1}^{\ell}\|\widehat{u}_{ik}\|_{\varepsilon_k}^2=\sum_{i=1}^{\ell}\|w_i\|^2=:\widehat{\mathfrak{c}}_m.$$

Let $\mathbb{N} \geq 5$ and $\Omega = B_1(0)$. Then, for any given $0 \leq m \leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell - m$ components are nonradial and change sign, with the following limit profile:

Let $\mathbb{N} \geq \mathbf{5}$ and $\Omega = B_1(0)$. Then, for any given $0 \leq m \leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\mathbf{u}_k = (u_{1k}, \ldots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell - m$ components are nonradial and change sign, with the following limit profile:

For each $i=1,\ldots,\ell$, there exist a sequence (ξ_{ik}) in $B_1(0)$ and a solution v_i to the problem (\mathcal{P}_i) such that, after passing to a subsequence,

Let $\mathbb{N} \geq \mathbf{5}$ and $\Omega = B_1(0)$. Then, for any given $0 \leq m \leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\mathbf{u}_k = (u_{1k}, \ldots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell - m$ components are nonradial and change sign, with the following limit profile:

For each $i = 1, ..., \ell$, there exist a sequence (ξ_{ik}) in $B_1(0)$ and a solution v_i to the problem (\mathcal{P}_i) such that, after passing to a subsequence,

$$\begin{split} \lim_{k\to\infty} \varepsilon_k^{-1} \mathrm{dist}(\xi_{ik}, \partial B_1(0)) &= \infty, \quad \lim_{k\to\infty} \varepsilon_k^{-1} |\xi_{ik} - \xi_{jk}| = \infty \quad \text{if} \quad \mathbf{i} \neq \mathbf{j}, \\ \lim_{k\to\infty} \|u_{ik} - v_i(\varepsilon_k^{-1}(\cdot - \xi_{ik}))\|_{\varepsilon_k} &= 0. \end{split}$$

Let $\mathbb{N} \geq \mathbf{5}$ and $\Omega = B_1(0)$. Then, for any given $0 \leq m \leq \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\mathbf{u}_k = (u_{1k}, \ldots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell - m$ components are nonradial and change sign, with the following limit profile:

For each $i = 1, ..., \ell$, there exist a sequence (ξ_{ik}) in $B_1(0)$ and a solution v_i to the problem (\mathcal{P}_i) such that, after passing to a subsequence,

$$\lim_{k\to\infty}\varepsilon_k^{-1}\mathrm{dist}(\xi_{ik},\partial B_1(0))=\infty,\quad \lim_{k\to\infty}\varepsilon_k^{-1}|\xi_{ik}-\xi_{jk}|=\infty\quad \text{if}\ \ \mathbf{i}\neq\mathbf{j},$$

$$\lim_{k\to\infty}\|u_{ik}-v_i(\varepsilon_k^{-1}(\cdot\ -\xi_{ik}))\|_{\varepsilon_k}=0.$$

 v_1,\ldots,v_m are positive and radial functions, while v_{m+1},\ldots,v_ℓ are sign-changing, nonradial functions and for $(z_1,z_2,x)\in\mathbb{C}\times\mathbb{C}\times\mathbb{R}^{N-4}$ they satisfy

$$\begin{cases} v_{i}(z_{1}, z_{2}, x) = v_{i}(e^{i\vartheta}z_{1}, e^{i\vartheta}z_{2}, gx) & \text{for all } \vartheta \in [0, 2\pi), \ g \in O(N-4), \\ v_{i}(z_{1}, z_{2}, x) = -v_{i}(z_{2}, z_{1}, x), \ i = m+1, \dots, \ell \end{cases}$$
(1.2)

Let $\mathbb{N} > \mathbf{5}$ and $\Omega = B_1(0)$. Then, for any given $0 < m < \ell$ and any sequence (ε_k) of positive numbers converging to zero, there exists solution $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(S_{\Omega, \varepsilon_k})$ whose first m components are positive and whose last $\ell-m$ components are nonradial and change sign, with the following limit profile:

For each $i = 1, ..., \ell$, there exist a sequence (ξ_{ik}) in $B_1(0)$ and a solution v_i to the problem (P_i) such that, after passing to a subsequence,

$$\lim_{k\to\infty}\varepsilon_k^{-1}\mathrm{dist}\big(\xi_{ik},\partial B_1(0)\big)=\infty,\quad \lim_{k\to\infty}\varepsilon_k^{-1}|\xi_{ik}-\xi_{jk}|=\infty\ \ \text{if}\ \ i\neq j,$$

$$\lim_{k\to\infty}\|u_{ik}-v_i(\varepsilon_k^{-1}(\cdot -\xi_{ik}))\|_{\varepsilon_k}=0.$$

 v_1, \ldots, v_m are positive and radial functions, while v_{m+1}, \ldots, v_ℓ are signchanging, nonradial functions and for $(z_1,z_2,x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$ they satisfy

$$\begin{cases} v_{i}(z_{1},z_{2},x)=v_{i}(\mathrm{e}^{\mathrm{i}\vartheta}z_{1},\mathrm{e}^{\mathrm{i}\vartheta}z_{2},gx) & \text{for all } \vartheta \in [0,2\pi), \ g \in O(N-4), \\ v_{i}(z_{1},z_{2},x)=-v_{i}(z_{2},z_{1},x), \ i=m+1,\ldots,\ell \end{cases}$$

$$Furthermore, \lim_{k\to\infty} \sum_{i=1}^{\ell} \|u_{ik}\|_{\varepsilon_{k}}^{2} = \sum_{i=1}^{\ell} \|v_{i}\|^{2} =: \mathfrak{c}_{m}, \text{ satisfies } \mathfrak{c}_{m} < \widehat{\mathfrak{c}}_{m}, \text{ with } \widehat{\mathfrak{c}}_{m} \text{ as} \end{cases}$$

$$(1.2)$$

Furthermore,
$$\lim_{k\to\infty}\sum_{i=1}^{\ell}\|u_{ik}\|_{\varepsilon_k}^2=\sum_{i=1}^{\ell}\|v_i\|^2=:\mathfrak{c}_m$$
, satisfies $\mathfrak{c}_m<\widehat{\mathfrak{c}}_m$, with $\widehat{\mathfrak{c}}_m$ as

in Theorem 3, if N > 6.

Behavior of Solutions

► The solutions of system $(S_{\Omega,\varepsilon})$ given by Theorem 4 behave as expected in the repulsive case $\lambda_{ij} < 0$:

They concentrate at points that are far from each other and from the boundary of the ball;

Behavior of Solutions

► The solutions of system $(S_{\Omega,\varepsilon})$ given by Theorem 4 behave as expected in the repulsive case $\lambda_{ii} < 0$:

They concentrate at points that are far from each other and from the boundary of the ball;

▶ The solutions given by Theorem 3 behave as in the attractive case $\lambda_{ij} > 0$: all components concentrate at the origin;

Behavior of Solutions

- ► The solutions of system $(S_{\Omega,\varepsilon})$ given by Theorem 4 behave as expected in the repulsive case $\lambda_{ii} < 0$:
 - They concentrate at points that are far from each other and from the boundary of the ball;
- ▶ The solutions given by Theorem 3 behave as in the attractive case $\lambda_{ij} > 0$: all components concentrate at the origin;
- ▶ The sign of the interaction coefficient λ_{ij} is not determinant in the segregation behavior of higher energy solutions;

Behavior of Solutions

- ► The solutions of system $(S_{\Omega,\varepsilon})$ given by Theorem 4 behave as expected in the repulsive case $\lambda_{ii} < 0$:
 - They concentrate at points that are far from each other and from the boundary of the ball;
- ▶ The solutions given by Theorem 3 behave as in the attractive case $\lambda_{ij} > 0$: all components concentrate at the origin;
- ► The sign of the interaction coefficient λ_{ij} is not determinant in the segregation behavior of higher energy solutions;
- ► Since they have **higher energy**, they enjoy **more symmetries** than those given by Theorem 4.

▶ These are the **first examples in the literature** that show this kind of **asymptotic behavior** for the elliptic system $(S_{\Omega,\varepsilon})$;

- ► These are the **first examples in the literature** that show this kind of **asymptotic behavior** for the elliptic system $(S_{\Omega,\varepsilon})$;
- ▶ As $\varepsilon \to 0$ the components of the solution of the system concentrate at fixed points of the group action:

- ► These are the **first examples in the literature** that show this kind of **asymptotic behavior** for the elliptic system $(S_{\Omega,\varepsilon})$;
- As $\varepsilon \to 0$ the components of the solution of the system concentrate at fixed points of the group action:
 - ▶ If the space of fixed points is trivial, all components will necessarily concentrate at the origin;
 - ▶ If the fixed-point space has positive dimension, all components will move far away from each other;

- ► These are the **first examples in the literature** that show this kind of **asymptotic behavior** for the elliptic system $(S_{\Omega,\varepsilon})$;
- As $\varepsilon \to 0$ the components of the solution of the system concentrate at fixed points of the group action:
 - If the space of fixed points is trivial, all components will necessarily concentrate at the origin;
 - ▶ If the fixed-point space has positive dimension, all components will move far away from each other;
- For N = 3 there are no symmetries with the properties required to produce nonradial sign-changing solutions;

Theoretical Background

▶ Let *G* be a closed subgroup of O(N), denote by $\mathbf{G}\mathbf{x} := \{\mathbf{g}\mathbf{x} : \mathbf{g} \in \mathbf{G}\}$ the *G*-orbit of $\mathbf{x} \in \mathbb{R}^N$;

- ▶ Let *G* be a closed subgroup of O(N), denote by $Gx := \{gx : g \in G\}$ the *G*-orbit of $x \in \mathbb{R}^N$;
- ▶ Let $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ be a **continuous homomorphism** of groups with the following property:
 - (A₁) If ϕ is surjective, then there exists $x_0 \in \mathbb{R}^N$ such that $K^{\phi}x_0 \neq Gx_0$ where $K^{\phi} := \ker \phi$.

- ▶ Let *G* be a closed subgroup of O(N), denote by $Gx := \{gx : g \in G\}$ the *G*-orbit of $x \in \mathbb{R}^N$;
- ▶ Let $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ be a **continuous homomorphism** of groups with the following property:
 - (A₁) If ϕ is surjective, then there exists $x_0 \in \mathbb{R}^N$ such that $K^{\phi}x_0 \neq Gx_0$ where $K^{\phi} := \ker \phi$.
- ▶ Let Θ be an open subset of \mathbb{R}^N which is G-invariant. A function $u: \Theta \to \mathbb{R}$ is ϕ -equivariant if $\mathbf{u}(\mathbf{g}\mathbf{x}) = \phi(\mathbf{g})\mathbf{u}(\mathbf{x}) \ \forall \mathbf{g} \in \mathbf{G}, \ \mathbf{x} \in \mathbf{\Theta}$;

- ▶ Let *G* be a closed subgroup of O(N), denote by $Gx := \{gx : g \in G\}$ the *G*-orbit of $x \in \mathbb{R}^N$;
- ▶ Let $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ be a **continuous homomorphism** of groups with the following property:
 - (A₁) If ϕ is surjective, then there exists $x_0 \in \mathbb{R}^N$ such that $K^{\phi}x_0 \neq Gx_0$ where $K^{\phi} := \ker \phi$.
- Let Θ be an open subset of \mathbb{R}^N which is *G*-invariant. A function $u: \Theta \to \mathbb{R}$ is ϕ -equivariant if $\mathbf{u}(\mathbf{g}\mathbf{x}) = \phi(\mathbf{g})\mathbf{u}(\mathbf{x}) \ \forall \mathbf{g} \in \mathbf{G}, \ \mathbf{x} \in \mathbf{\Theta}$;
- ▶ Define $H_0^1(\Theta)^{\phi} := \{u \in H_0^1(\Theta) : u \text{ is } \phi\text{-equivariant}\}$. Assumption (**A**₁) guarantees that $H_0^1(\Theta)^{\phi}$ has infinite dimension;

- ▶ Let *G* be a closed subgroup of O(N), denote by $Gx := \{gx : g \in G\}$ the *G*-orbit of $x \in \mathbb{R}^N$;
- ▶ Let $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ be a **continuous homomorphism** of groups with the following property:
 - (A₁) If ϕ is surjective, then there exists $x_0 \in \mathbb{R}^N$ such that $K^{\phi}x_0 \neq Gx_0$ where $K^{\phi} := \ker \phi$.
- Let Θ be an open subset of \mathbb{R}^N which is *G*-invariant. A function $u: \Theta \to \mathbb{R}$ is ϕ -equivariant if $\mathbf{u}(\mathbf{g}\mathbf{x}) = \phi(\mathbf{g})\mathbf{u}(\mathbf{x}) \ \forall \mathbf{g} \in \mathbf{G}, \ \mathbf{x} \in \mathbf{\Theta}$;
- ▶ Define $H_0^1(\Theta)^{\phi} := \{u \in H_0^1(\Theta) : u \text{ is } \phi\text{-equivariant}\}$. Assumption (**A**₁) guarantees that $H_0^1(\Theta)^{\phi}$ has infinite dimension;
- ▶ If $\phi \equiv 1$ is the **trivial homomorphism**, then $H_0^1(\Theta)^{\phi}$ is the space of *G*-invariant functions in $H_0^1(\Theta)$;

- ▶ Let *G* be a closed subgroup of O(N), denote by $Gx := \{gx : g \in G\}$ the *G*-orbit of $x \in \mathbb{R}^N$;
- ▶ Let $\phi: G \to \mathbb{Z}_2 := \{-1, 1\}$ be a **continuous homomorphism** of groups with the following property:
 - (A₁) If ϕ is surjective, then there exists $x_0 \in \mathbb{R}^N$ such that $K^{\phi}x_0 \neq Gx_0$ where $K^{\phi} := \ker \phi$.
- ▶ Let Θ be an open subset of \mathbb{R}^N which is *G*-invariant. A function $u: \Theta \to \mathbb{R}$ is ϕ -equivariant if $\mathbf{u}(\mathbf{g}\mathbf{x}) = \phi(\mathbf{g})\mathbf{u}(\mathbf{x}) \ \forall \mathbf{g} \in \mathbf{G}, \ \mathbf{x} \in \mathbf{\Theta}$;
- ▶ Define $H_0^1(\Theta)^{\phi} := \{u \in H_0^1(\Theta) : u \text{ is } \phi\text{-equivariant}\}$. Assumption (**A**₁) guarantees that $H_0^1(\Theta)^{\phi}$ has infinite dimension;
- ▶ If $\phi \equiv 1$ is the **trivial homomorphism**, then $H_0^1(\Theta)^{\phi}$ is the space of *G*-invariant functions in $H_0^1(\Theta)$;
- ▶ If ϕ is surjective, then every nontrivial function $u \in H_0^1(\Theta)^{\phi}$ is nonradial and changes sign.

(i) Let Γ be the group generated by $\{ {
m e}^{{
m i}\vartheta} : \vartheta \in [0,2\pi) \} \cup \{ \tau \}$ acting on \mathbb{R}^N by

$$\mathrm{e}^{\mathrm{i}\vartheta}\big(z_1,z_2,x\big) = \big(\mathrm{e}^{\mathrm{i}\vartheta}z_1,\mathrm{e}^{\mathrm{i}\vartheta}z_2,x\big) \quad \text{and} \quad \tau\big(z_1,z_2,x\big) = \big(z_2,z_1,x\big)$$

for all $(z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N$ and $\phi : \Gamma \to \mathbb{Z}_2$ be the homomorphism given by $\phi(e^{i\vartheta}) := 1$ and $\phi(\tau) := -1$.

(i) Let Γ be the group generated by $\{e^{i\vartheta}:\vartheta\in[0,2\pi)\}\cup\{\tau\}$ acting on \mathbb{R}^N by

$$\mathrm{e}^{\mathrm{i}\vartheta}\big(z_1,z_2,x\big) = \big(\mathrm{e}^{\mathrm{i}\vartheta}z_1,\mathrm{e}^{\mathrm{i}\vartheta}z_2,x\big) \quad \text{and} \quad \tau\big(z_1,z_2,x\big) = \big(z_2,z_1,x\big)$$

for all $(z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N$ and $\phi : \Gamma \to \mathbb{Z}_2$ be the homomorphism given by $\phi(e^{i\vartheta}) := 1$ and $\phi(\tau) := -1$.

Hence $(\mathbf{A_1})$ is satisfied since the kernel of ϕ is the group

$$\mathcal{K}^{\phi} := \{ \mathrm{e}^{\mathrm{i}\vartheta} : \vartheta \in [0, 2\pi) \}$$

(i) Let Γ be the group generated by $\{e^{i\vartheta}:\vartheta\in[0,2\pi)\}\cup\{\tau\}$ acting on \mathbb{R}^N by

$$\mathrm{e}^{\mathrm{i}\vartheta}(z_1,z_2,x) = \left(\mathrm{e}^{\mathrm{i}\vartheta}z_1,\mathrm{e}^{\mathrm{i}\vartheta}z_2,x\right) \quad \text{and} \quad \tau(z_1,z_2,x) = (z_2,z_1,x)$$

for all $(z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N$ and $\phi : \Gamma \to \mathbb{Z}_2$ be the homomorphism given by $\phi(e^{i\vartheta}) := 1$ and $\phi(\tau) := -1$.

Hence (A_1) is satisfied since the kernel of ϕ is the group

$$\mathcal{K}^{\phi} := \{ \mathrm{e}^{\mathrm{i}\vartheta} : \vartheta \in [0, 2\pi) \}$$

and the point $x_0=(1,0,0)\in\mathbb{C}\times\mathbb{C}\times\mathbb{R}^{N-4}$ is such that

$$\mathcal{K}^{\phi} x_0 = \{(\mathrm{e}^{\mathrm{i} \vartheta}, 0, 0) : \vartheta \in [0, 2\pi)\}$$
 and

$$\Gamma x_0 = \{(\mathrm{e}^{\mathrm{i}\vartheta},0,0): \vartheta \in [0,2\pi)\} \cup \{(0,\mathrm{e}^{\mathrm{i}\vartheta},0): \vartheta \in [0,2\pi)\};$$

(ii) Let
$$\mathbf{G} := \mathbf{\Gamma} \times \mathbf{O}(\mathbf{N} - \mathbf{4})$$
 with Γ as in (i) and $g \in O(N - 4)$ acting as
$$g(z_1, z_2, x) = (z_1, z_2, gx) \qquad \forall \ (z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N.$$

(ii) Let $\mathbf{G}:=\mathbf{\Gamma}\times\mathbf{O}(\mathbf{N}-\mathbf{4})$ with Γ as in (i) and $g\in O(N-4)$ acting as $g(z_1,z_2,x)=(z_1,z_2,gx) \qquad \forall \ (z_1,z_2,x)\in\mathbb{C}\times\mathbb{C}\times\mathbb{R}^{N-4}\equiv\mathbb{R}^N.$ Let $\phi:G\to\mathbb{Z}_2$ be the homomorphism given by $\phi(\mathrm{e}^{\mathrm{i}\vartheta}):=1$, $\phi(\tau):=-1$ and $\phi(g):=1$ for all $g\in O(N-4)$.

(ii) Let
$$\mathbf{G} := \mathbf{\Gamma} \times \mathbf{O}(\mathbf{N} - \mathbf{4})$$
 with Γ as in (i) and $g \in O(N-4)$ acting as $g(z_1, z_2, x) = (z_1, z_2, gx) \qquad \forall \ (z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N.$ Let $\phi : G \to \mathbb{Z}_2$ be the homomorphism given by $\phi(\mathrm{e}^{\mathrm{i}\vartheta}) := 1$, $\phi(\tau) := -1$ and $\phi(g) := 1$ for all $g \in O(N-4)$. Then, $K^\phi := \ker \phi = \{\mathrm{e}^{\mathrm{i}\vartheta} : \vartheta \in [0, 2\pi)\} \times O(N-4)$

(ii) Let
$$\mathbf{G} := \mathbf{\Gamma} \times \mathbf{O}(\mathbf{N} - \mathbf{4})$$
 with Γ as in (i) and $g \in O(N-4)$ acting as $g(z_1,z_2,x) = (z_1,z_2,gx) \qquad \forall \ (z_1,z_2,x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4} \equiv \mathbb{R}^N.$ Let $\phi:G \to \mathbb{Z}_2$ be the homomorphism given by $\phi(\mathrm{e}^{\mathrm{i}\vartheta}) := 1$, $\phi(\tau) := -1$ and $\phi(g) := 1$ for all $g \in O(N-4)$. Then,
$$K^\phi := \ker \phi = \{\mathrm{e}^{\mathrm{i}\vartheta} : \vartheta \in [0,2\pi)\} \times O(N-4)$$
 and, for $x_0 = (1,0,0) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$, one has
$$K^\phi x_0 = \{(\mathrm{e}^{\mathrm{i}\vartheta},0,0) : \vartheta \in [0,2\pi)\} \quad \text{and}$$
 $Gx_0 = \{(\mathrm{e}^{\mathrm{i}\vartheta},0,0) : \vartheta \in [0,2\pi)\} \cup \{(0,\mathrm{e}^{\mathrm{i}\vartheta},0) : \vartheta \in [0,2\pi)\}$, so (\mathbf{A}_1) is satisfied.

► Fix a closed subgroup G of O(N) and, for each $i = 1, ..., \ell$, a continuous homomorphism $\phi_i : G \to \mathbb{Z}_2$ satisfying $(\mathbf{A_1})$;

- ▶ Fix a closed subgroup G of O(N) and, for each $i = 1, ..., \ell$, a continuous homomorphism $\phi_i : G \to \mathbb{Z}_2$ satisfying $(\mathbf{A_1})$;
- ▶ If Θ is a *G*-invariant open subset of \mathbb{R}^N , we consider the system

$$\begin{cases}
-\varepsilon^{2} \Delta u_{i} + u_{i} = \mu_{i} |u_{i}|^{p-2} u_{i} + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij}-2} u_{i}, \\
u_{i} \in H_{0}^{1}(\Theta)^{\phi_{i}}, \quad u_{i} \neq 0, \qquad i = 1, \dots, \ell,
\end{cases} (\mathcal{S}_{\Theta, \varepsilon}^{\phi})$$

with $\varepsilon > 0$, $\mu_i > 0$, $\lambda_{ij} = \lambda_{ji} < 0$, α_{ij} , $\beta_{ij} > 1$, $\alpha_{ij} = \beta_{ji}$ and $\alpha_{ij} + \beta_{ij} = p \in (2, 2^*)$.

- ▶ Fix a closed subgroup G of O(N) and, for each $i = 1, ..., \ell$, a continuous homomorphism $\phi_i : G \to \mathbb{Z}_2$ satisfying $(\mathbf{A_1})$;
- ▶ If Θ is a *G*-invariant open subset of \mathbb{R}^N , we consider the system

$$\begin{cases}
-\varepsilon^{2} \Delta u_{i} + u_{i} = \mu_{i} |u_{i}|^{p-2} u_{i} + \sum_{\substack{j=1\\j\neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij}-2} u_{i}, \\
u_{i} \in H_{0}^{1}(\Theta)^{\phi_{i}}, \quad u_{i} \neq 0, \qquad i = 1, \dots, \ell,
\end{cases} (\mathcal{S}_{\Theta, \varepsilon}^{\phi})$$

with $\varepsilon > 0$, $\mu_i > 0$, $\lambda_{ij} = \lambda_{ji} < 0$, α_{ij} , $\beta_{ij} > 1$, $\alpha_{ij} = \beta_{ji}$ and $\alpha_{ij} + \beta_{ij} = p \in (2, 2^*)$.

▶ Set $\mathcal{H}^{\ell}(\Theta) := H_0^1(\Theta)^{\phi_1} \times \cdots \times H_0^1(\Theta)^{\phi_{\ell}}$, and denote an element in $\mathcal{H}^{\ell}(\Theta)$ by $\mathbf{u} = (u_1, \dots, u_{\ell})$. For each $\varepsilon > 0$ we define the equivalent norms

$$\|\mathbf{u}\|_{\ell,\varepsilon} := \left(\sum_{i=1}^{\ell} \|u_i\|_{\varepsilon}^2\right)^{1/2}$$
, where $\|u_i\|_{\varepsilon}^2 := \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \left[\varepsilon^2 |\nabla u_i|^2 + u_i^2\right]$.

which is of class C^1 .

 $lackbox{Consider the functional } \mathcal{J}_{arepsilon}^{\ell}:\mathcal{H}^{\ell}(\Theta)
ightarrow\mathbb{R}$ given by

$$\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) := \frac{1}{2} \sum_{i=1}^{\ell} \|u_i\|_{\varepsilon}^2 - \frac{1}{\rho} \sum_{i=1}^{\ell} \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \mu_i |u_i|^{\rho} - \frac{1}{2} \sum_{\substack{i,j=1\\j\neq i}}^{\ell} \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \lambda_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}},$$

which is of class C^1 .

▶ Since $\lambda_{ij} = \lambda_{ji}$, $\beta_{ij} = \alpha_{ji}$ and $\alpha_{ij} + \beta_{ij} = p$, its partial derivatives are

$$\partial_{i} \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) \mathbf{v} = \frac{1}{\varepsilon^{N}} \Big[\int_{\mathbb{R}^{N}} (\varepsilon^{2} \nabla u_{i} \cdot \nabla \mathbf{v} + u_{i} \mathbf{v}) \\ - \int_{\mathbb{R}^{N}} \mu_{i} |u_{i}|^{p-2} u_{i} \mathbf{v} - \sum_{\substack{j=1\\j \neq i}}^{\ell} \int_{\mathbb{R}^{N}} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij}-2} u_{i} \mathbf{v} \Big], \quad (2.1)$$

for $v \in H^1_0(\Theta)^{\phi_i}$ and $i = 1, \dots, \ell$.

 $lackbox{Consider the functional } \mathcal{J}_{arepsilon}^{\ell}:\mathcal{H}^{\ell}(\Theta)
ightarrow\mathbb{R}$ given by

$$\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) := \frac{1}{2} \sum_{i=1}^{\ell} \|u_i\|_{\varepsilon}^2 - \frac{1}{p} \sum_{i=1}^{\ell} \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \mu_i |u_i|^p - \frac{1}{2} \sum_{\substack{i,j=1\\j \neq i}}^{\ell} \frac{1}{\varepsilon^N} \int_{\mathbb{R}^N} \lambda_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}},$$

which is of class C^1 .

▶ Since $\lambda_{ij} = \lambda_{ji}$, $\beta_{ij} = \alpha_{ji}$ and $\alpha_{ij} + \beta_{ij} = p$, its partial derivatives are

$$\partial_{i} \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) \mathbf{v} = \frac{1}{\varepsilon^{N}} \Big[\int_{\mathbb{R}^{N}} (\varepsilon^{2} \nabla u_{i} \cdot \nabla \mathbf{v} + u_{i} \mathbf{v}) \\ - \int_{\mathbb{R}^{N}} \mu_{i} |u_{i}|^{\rho - 2} u_{i} \mathbf{v} - \sum_{\substack{j=1\\j \neq i}}^{\ell} \int_{\mathbb{R}^{N}} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij} - 2} u_{i} \mathbf{v} \Big], \quad (2.1)$$

for $v \in H^1_0(\Theta)^{\phi_i}$ and $i = 1, \dots, \ell$.

▶ By the **principle of symmetric criticality**, the solutions to system $(S_{\Theta,\varepsilon}^{\phi})$ are the critical points of $\mathcal{J}_{\varepsilon}^{\ell}$ whose components u_i are nontrivial.

The Nehari-Type Set

► All solutions belong to the Nehari-type set

$$\mathcal{N}_{\varepsilon}^{\ell}(\Theta) := \Big\{ \mathbf{u} \in \mathcal{H}^{\ell}(\Theta) : u_i \neq 0, \ \partial_i \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) u_i = 0, \ \forall \ i = 1, \dots, \ell \Big\}.$$

The Nehari-Type Set

► All solutions belong to the Nehari-type set

$$\mathcal{N}_{\varepsilon}^{\ell}(\Theta) := \Big\{ \mathbf{u} \in \mathcal{H}^{\ell}(\Theta) : u_i \neq 0, \ \partial_i \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) u_i = 0, \ \forall \ i = 1, \dots, \ell \Big\}.$$

▶ Note that

$$\partial_{i}\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u})u_{i} = \|u_{i}\|_{\varepsilon}^{2} - \frac{1}{\varepsilon^{N}} \int_{\mathbb{R}^{N}} \mu_{i}|u_{i}|^{p} - \sum_{\substack{j=1\\j\neq i}}^{\ell} \frac{1}{\varepsilon^{N}} \int_{\mathbb{R}^{N}} \lambda_{ij}\beta_{ij}|u_{j}|^{\alpha_{ij}}|u_{i}|^{\beta_{ij}}.$$
(2.2)

The Nehari-Type Set

► All solutions belong to the Nehari-type set

$$\mathcal{N}_{\varepsilon}^{\ell}(\Theta) := \Big\{ \mathbf{u} \in \mathcal{H}^{\ell}(\Theta) : u_i \neq 0, \ \partial_i \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) u_i = 0, \ \forall \ i = 1, \dots, \ell \Big\}.$$

▶ Note that

$$\partial_{i}\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u})u_{i} = \|u_{i}\|_{\varepsilon}^{2} - \frac{1}{\varepsilon^{N}} \int_{\mathbb{R}^{N}} \mu_{i}|u_{i}|^{p} - \sum_{\substack{j=1\\j\neq i}}^{\ell} \frac{1}{\varepsilon^{N}} \int_{\mathbb{R}^{N}} \lambda_{ij}\beta_{ij}|u_{j}|^{\alpha_{ij}}|u_{i}|^{\beta_{ij}}.$$
(2.2)

▶ Define

$$c_{\varepsilon}^{\ell}(\Theta) := \inf_{\mathbf{u} \in \mathcal{N}_{\varepsilon}^{\ell}(\Theta)} \mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}).$$

▶ From (2.1), if $\mathbf{u} = (u_1, u_2, \dots, u_\ell) \in \mathcal{N}_{\varepsilon}^{\ell}(\Theta)$ one sees that

$$\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) = \frac{p-2}{2p} \sum_{i=1}^{\ell} \|u_i\|_{\varepsilon}^2 = \frac{p-2}{2p} \|\mathbf{u}\|_{\ell,\varepsilon}^2.$$
 (2.3)

The Existence of a Least Energy Solution

▶ A solution to the system $(S_{\Theta,\varepsilon}^{\phi})$ such that $\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) = \mathbf{c}_{\varepsilon}^{\ell}(\Theta)$ is called a least energy solution to $(S_{\Theta,\varepsilon}^{\phi})$.

The Existence of a Least Energy Solution

▶ A solution to the system $(S_{\Theta,\varepsilon}^{\phi})$ such that $\mathcal{J}_{\varepsilon}^{\ell}(\mathbf{u}) = \mathbf{c}_{\varepsilon}^{\ell}(\Theta)$ is called a least energy solution to $(S_{\Theta,\varepsilon}^{\phi})$.

Theorem (5) - (Existence of minimizers)

If Θ is a bounded G-invariant domain in \mathbb{R}^N , then, for each $\varepsilon > 0$, system $(S_{\Theta,\varepsilon}^{\phi})$ has a least energy solution.

The Limit System

Establishing the Nehari Levels

▶ Let ϕ_i and G satisfy $(\mathbf{A_1})$ and also the following property: $(\mathbf{A_2})$ For every $x \in \mathbb{R}^N$, the G-orbit of x is either infinite, or $\mathbf{Gx} = \{x\}$.

Establishing the Nehari Levels

- ▶ Let ϕ_i and G satisfy $(\mathbf{A_1})$ and also the following property: $(\mathbf{A_2})$ For every $x \in \mathbb{R}^N$, the G-orbit of x is either infinite, or $\mathbf{Gx} = \{\mathbf{x}\}$.
- ▶ The limit system under the ϕ_i -equivariant component functions is

$$\begin{cases} -\Delta u_i + u_i = \mu_i |u_i|^{p-2} u_i + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}-2} u_i, \\ u_i \in H^1(\mathbb{R}^N)^{\phi_i}, \quad u_i \neq 0, \qquad 1 < i \leq \ell. \end{cases}$$

Establishing the Nehari Levels

- ▶ Let ϕ_i and G satisfy $(\mathbf{A_1})$ and also the following property: $(\mathbf{A_2})$ For every $x \in \mathbb{R}^N$, the G-orbit of x is either infinite, or $\mathbf{Gx} = \{\mathbf{x}\}$.
- \blacktriangleright The limit system under the ϕ_i -equivariant component functions is

$$\begin{cases} -\Delta u_{i} + u_{i} = \mu_{i} |u_{i}|^{p-2} u_{i} + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_{j}|^{\alpha_{ij}} |u_{i}|^{\beta_{ij}-2} u_{i}, \\ u_{i} \in H^{1}(\mathbb{R}^{N})^{\phi_{i}}, \quad u_{i} \neq 0, \qquad 1 < i \leq \ell. \end{cases}$$

$$(S_{\infty,\ell}^{\phi})$$

 $\mathsf{ Set } \, \mathcal{H}^\ell := H^1(\mathbb{R}^N)^{\phi_1} \times \cdots \times H^1(\mathbb{R}^N)^{\phi_\ell}, \ \, \mathcal{J}^\ell_\infty := \mathcal{J}^\ell_1 : \mathcal{H}^\ell \to \mathbb{R} \ \, \text{and} \\ \, \mathcal{N}^\ell_\infty := \mathcal{N}^\ell_1(\mathbb{R}^N) \, \, \text{and also let} \, \, \mathbf{c}^\ell_\infty := \inf_{\mathbf{u} \in \mathcal{N}^\ell_\infty} \mathcal{J}^\ell_\infty(\mathbf{u}).$

- ▶ Let ϕ_i and G satisfy $(\mathbf{A_1})$ and also the following property: $(\mathbf{A_2})$ For every $x \in \mathbb{R}^N$, the G-orbit of x is either infinite, or $\mathbf{Gx} = \{\mathbf{x}\}$.
- \blacktriangleright The limit system under the ϕ_i -equivariant component functions is

$$\begin{cases} -\Delta u_i + u_i = \mu_i |u_i|^{p-2} u_i + \sum_{\substack{j=1\\j \neq i}}^{\ell} \lambda_{ij} \beta_{ij} |u_j|^{\alpha_{ij}} |u_i|^{\beta_{ij}-2} u_i, \\ u_i \in H^1(\mathbb{R}^N)^{\phi_i}, \quad u_i \neq 0, \qquad 1 < i \leq \ell. \end{cases}$$

- ▶ Set $\mathcal{H}^{\ell} := H^{1}(\mathbb{R}^{N})^{\phi_{1}} \times \cdots \times H^{1}(\mathbb{R}^{N})^{\phi_{\ell}}$, $\mathcal{J}_{\infty}^{\ell} := \mathcal{J}_{1}^{\ell} : \mathcal{H}^{\ell} \to \mathbb{R}$ and $\mathcal{N}_{\infty}^{\ell} := \mathcal{N}_{1}^{\ell}(\mathbb{R}^{N})$ and also let $\mathbf{c}_{\infty}^{\ell} := \inf_{\mathbf{u} \in \mathcal{N}_{\infty}^{\ell}} \mathcal{J}_{\infty}^{\ell}(\mathbf{u})$.
- ▶ For each $i = 1, ..., \ell$, consider the problem

$$\begin{cases} -\Delta u + u = \mu_i |u|^{p-2} u, \\ u \in H^1(\mathbb{R}^N)^{\phi_i}, \quad u \neq 0. \end{cases}$$
 $(\mathcal{P}_i^{\phi_i})$

Its solutions are the critical points of $J_i: H^1(\mathbb{R}^N)^{\phi_i} \to \mathbb{R}$ given by $J_i(u):=\frac{1}{2}\int_{\mathbb{R}^N}(|\nabla u|^2+u^2)-\frac{1}{p}\int_{\mathbb{R}^N}|u|^p$, and belong to the Nehari manifold $\mathcal{N}_i:=\{u\in H^1(\mathbb{R}^N)^{\phi_i}: u\neq 0,\ J_i'(u)u=0\}$. We set $c_i:=\inf_{u\in\mathcal{N}_i}J_i(u)$.

Its solutions are the critical points of $J_i: H^1(\mathbb{R}^N)^{\phi_i} \to \mathbb{R}$ given by $J_i(u):=\frac{1}{2}\int_{\mathbb{R}^N}(|\nabla u|^2+u^2)-\frac{1}{p}\int_{\mathbb{R}^N}|u|^p$, and belong to the Nehari manifold $\mathcal{N}_i:=\{u\in H^1(\mathbb{R}^N)^{\phi_i}: u\neq 0,\ J_i'(u)u=0\}$. We set $c_i:=\inf_{u\in M}J_i(u)$.

▶ A solution **u** to
$$(S_{\infty,\ell}^{\phi})$$
 satisfying $\mathcal{J}_{\infty}^{\ell}(\mathbf{u}) = \mathbf{c}_{\infty}^{\ell}$ is called a **least** energy solution to $(S_{\infty,\ell}^{\phi})$. Similarly, a solution u to $(\mathcal{P}_{i}^{\phi_{i}})$ satisfying $J_{i}(u) = c_{i}$ is called a **least energy solution** to $(\mathcal{P}_{i}^{\phi_{i}})$.

Its solutions are the critical points of $J_i: H^1(\mathbb{R}^N)^{\phi_i} \to \mathbb{R}$ given by $J_i(u):=\frac{1}{2}\int_{\mathbb{R}^N}(|\nabla u|^2+u^2)-\frac{1}{p}\int_{\mathbb{R}^N}|u|^p$, and belong to the Nehari manifold $\mathcal{N}_i:=\{u\in H^1(\mathbb{R}^N)^{\phi_i}: u\neq 0,\ J_i'(u)u=0\}$. We set

$$c_i := \inf_{u \in \mathcal{N}_i} J_i(u).$$

- ▶ A solution **u** to $(S_{\infty,\ell}^{\phi})$ satisfying $\mathcal{J}_{\infty}^{\ell}(\mathbf{u}) = \mathbf{c}_{\infty}^{\ell}$ is called a **least** energy solution to $(S_{\infty,\ell}^{\phi})$. Similarly, a solution u to $(\mathcal{P}_{i}^{\phi_{i}})$ satisfying $J_{i}(u) = c_{i}$ is called a **least energy solution** to $(\mathcal{P}_{i}^{\phi_{i}})$.
- ► Concerning to the fundamental role of the *G-fixed-point space*

$$Fix(G) := \{ x \in \mathbb{R}^N : gx = x \text{ for all } g \in G \}$$

we prove the following results.

The Comparison of the Nehari Levels

Proposition (6) - (Comparing the Nehari Levels)

The following statements hold true:

$$(i) c_{\infty}^{\ell} \geq \sum_{i=1}^{\ell} c_i.$$

- (ii) If Fix(G) has positive dimension, then $c_{\infty}^{\ell} = \sum_{i=1}^{\infty} c_i$.
- (iii) If $\ell \geq 2$ and $c_{\infty}^{\ell} = \sum_{i=1}^{\ell} c_i$, then c_{∞}^{ℓ} is **NOT** attained.

Theorem (7) - (The Minimizing Sequences of System $(\mathcal{S}^\phi_{\infty,\ell})$)

Let
$$\ell \geq 2$$
 and $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k}) \in \mathcal{N}_{\infty}^{\ell}$ be such that $\mathcal{J}_{\infty}^{\ell}(\mathbf{u}_k) \to \mathbf{c}_{\infty}^{\ell}$.

(1) If $\operatorname{Fix}(\mathbf{G}) = \{\mathbf{0}\}$, then there exists a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell}^{\phi})$ such that, after passing to a subsequence, $\lim_{k \to \infty} \|u_{ik} - w_i\| = 0$ for all $i = 1, \dots, \ell$, and $c_{\infty}^{\ell} > \sum_{i=1}^{\ell} c_i$. Moreover, if $u_{ik} \geq 0$ for all $k \in \mathbb{N}$, then $w_i \geq 0$.

Theorem (7) - (The Minimizing Sequences of System $(\mathcal{S}^\phi_{\infty,\ell})$)

Let
$$\ell \geq 2$$
 and $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k}) \in \mathcal{N}_{\infty}^{\ell}$ be such that $\mathcal{J}_{\infty}^{\ell}(\mathbf{u}_k) \to \mathbf{c}_{\infty}^{\ell}$.

- (1) If $\operatorname{Fix}(\mathbf{G}) = \{\mathbf{0}\}$, then there exists a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell}^{\phi})$ such that, after passing to a subsequence, $\lim_{k \to \infty} \|u_{ik} w_i\| = 0$ for all $i = 1, \dots, \ell$, and $c_{\infty}^{\ell} > \sum_{i=1}^{\ell} c_i$. Moreover, if $u_{ik} \geq 0$ for all $k \in \mathbb{N}$, then $w_i \geq 0$.
- (II) If $\dim(\operatorname{Fix}(G)) > 0$, then, for each $i = 1, ..., \ell$, there exist (ξ_{ik}) in $\operatorname{Fix}(G)$ and a least energy solution v_i to the problem $(\mathcal{P}_i^{\phi_i})$ such that, after passing to a subsequence, $\lim_{k \to \infty} |\xi_{ik} \xi_{jk}| = \infty$ if $i \neq j$,

$$\lim_{k\to\infty} \|u_{ik} - v_i(\cdot - \xi_{ik})\| = 0 \text{ for all } i, j = 1, \dots, \ell, \text{ and } \mathbf{c}_{\infty}^{\ell} = \sum_{i=1}^{\ell} \mathbf{c}_i.$$
 Moreover, if $u_{ik} \geq 0$ for all $k \in \mathbb{N}$, then $v_i \geq 0$.

▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

Proof of Theorem 1.

▶ The group $G := \Gamma \times O(N - 4)$ introduced in Example (ii) satisfies (A_2) if either N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$;

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

- ▶ The group $G := \Gamma \times O(N-4)$ introduced in Example (ii) satisfies (A_2) if either N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$;
- ▶ For i = 1, ..., m we set $\phi_i \equiv 1$, and for $i = m + 1, ..., \ell$ we also take $\phi_i = \phi$ as in Example (ii);

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

- ▶ The group $G := \Gamma \times O(N-4)$ introduced in Example (ii) satisfies (A_2) if either N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$;
- ⊳ For i = 1,...,m we set $\phi_i \equiv 1$, and for $i = m + 1,...,\ell$ we also take $\phi_i = \phi$ as in Example (ii);
- ▷ Applying Theorem 7 we obtain a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell})$ satisfying (1.1);

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

- ▶ The group $G := \Gamma \times O(N-4)$ introduced in Example (ii) satisfies (A_2) if either N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$;
- ⊳ For i = 1,...,m we set $\phi_i \equiv 1$, and for $i = m + 1,...,\ell$ we also take $\phi_i = \phi$ as in Example (ii);
- ▷ Applying Theorem 7 we obtain a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell})$ satisfying (1.1);
- \triangleright By standard arguments we may take w_1, \ldots, w_m to be **positive**;

- ▶ Theorem 2 follows straightway from Proposition 6 and Theorem 7;
- ▶ Theorem 1 follows by applying Theorem 7 for a suitable subgroup G and its homomorphisms ϕ_i :

- ▶ The group $G := \Gamma \times O(N-4)$ introduced in Example (ii) satisfies (A_2) if either N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$;
- ▶ For i = 1, ..., m we set $\phi_i \equiv 1$, and for $i = m + 1, ..., \ell$ we also take $\phi_i = \phi$ as in Example (ii);
- ▶ Applying Theorem 7 we obtain a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell})$ satisfying (1.1);
- \triangleright By standard arguments we may take w_1, \ldots, w_m to be **positive**;
- ▶ The symmetries ensure that the last ℓm components are nonradial and change sign.

The Asymptotic Behavior of

Minimizers

- ▶ As before we assume that $(A_1) (A_2)$ are satisfied;
- ▶ Ω is a *G*-invariant bounded domain in \mathbb{R}^N and that $0 \in \Omega$.

- ▶ As before we assume that $(A_1) (A_2)$ are satisfied;
- ▶ Ω is a *G*-invariant bounded domain in \mathbb{R}^N and that $0 \in \Omega$.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (ε_k) of positive numbers converging to zero, there exists a least energy solution $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k}^{\phi})$ with the following limit profile:

- ▶ As before we assume that $(A_1) (A_2)$ are satisfied;
- ▶ Ω is a *G*-invariant bounded domain in \mathbb{R}^N and that $0 \in \Omega$.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (ε_k) of positive numbers converging to zero, there exists a least energy solution $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(S_{\Omega, \varepsilon_k}^{\phi})$ with the following limit profile:

(1) If $Fix(G) = \{0\}$, then there exists a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell}^{\phi})$ such that, after passing to a subsequence,

- ▶ As before we assume that $(A_1) (A_2)$ are satisfied;
- ▶ Ω is a *G*-invariant bounded domain in \mathbb{R}^N and that $0 \in \Omega$.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (ε_k) of positive numbers converging to zero, there exists a least energy solution $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(\mathcal{S}_{\Omega, \varepsilon_k}^{\phi})$ with the following limit profile:

(1) If $Fix(G) = \{0\}$, then there exists a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(S_{\infty,\ell}^{\phi})$ such that, after passing to a subsequence,

$$\lim_{k\to\infty}\|u_{ik}-w_i(\varepsilon_k^{-1}\,\cdot\,)\|_{\varepsilon_k}=0\quad \text{for all}\ \ i=1,\dots,\ell,$$

and
$$\lim_{\varepsilon \to 0} c_{\varepsilon}^{\ell}(\Omega) = c_{\infty}^{\ell}$$
.

Moreover, $w_i \geq 0$ if $u_{ik} \geq 0$ for all $k \in \mathbb{N}$.

(II) If $\operatorname{dim}(\operatorname{Fix}(G)) > 0$, then, for each $i = 1, \dots, \ell$, there exist a sequence (ζ_{ik}) in $\Omega \cap \operatorname{Fix}(G)$ and a least energy solution v_i to the problem $(\mathcal{P}_i^{\phi_i})$ such that, after passing to a subsequence,

(II) If $\operatorname{dim}(\operatorname{Fix}(G)) > 0$, then, for each $i = 1, \ldots, \ell$, there exist a sequence (ζ_{ik}) in $\Omega \cap \operatorname{Fix}(G)$ and a least energy solution v_i to the problem $(\mathcal{P}_i^{\phi_i})$ such that, after passing to a subsequence,

$$\lim_{k \to \infty} \varepsilon_k^{-1} \mathrm{dist}(\zeta_{ik}, \partial \Omega) = \infty, \quad \lim_{k \to \infty} \varepsilon_k^{-1} |\zeta_{ik} - \zeta_{jk}| = \infty \text{ if } i \neq j,$$

$$\lim_{k \to \infty} \|u_{ik} - v_i(\varepsilon_k^{-1}(\cdot - \zeta_{ik}))\|_{\varepsilon_k} = 0, \quad \text{for all} \quad i, j = 1, \dots, \ell,$$
and
$$\lim_{\varepsilon \to 0} c_{\varepsilon}^{\ell}(\Omega) = \sum_{i=1}^{\ell} c_i.$$

Moreover, $v_i \geq 0$ if $u_{ik} \geq 0$ for all $k \in \mathbb{N}$.

▶ We derive Theorems 3 and 4 from Theorem 8.

▶ We derive Theorems 3 and 4 from Theorem 8.

Proof of Theorem 3.

▶ The group $G := \Gamma \times O(N-4)$ satisfies (A_2) if N=4 or $N \ge 6$, and $Fix(G) = \{0\}$ and we choose the homomorphisms ϕ_i as in Theorem 1;

▶ We derive Theorems 3 and 4 from Theorem 8.

- ▶ The group $G := \Gamma \times O(N-4)$ satisfies (A_2) if N=4 or $N \ge 6$, and $Fix(G) = \{0\}$ and we choose the homomorphisms ϕ_i as in Theorem 1;
- ightharpoonup By Theorem 5 there exist a least energy solution $\widehat{\mathbf{u}}_k = (\widehat{u}_{1k}, \dots, \widehat{u}_{\ell k})$ to the system $(\mathcal{S}^\phi_{\mathcal{B}_1(0), \varepsilon_k})$ and by Theorem 8 a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(\mathcal{S}_{\infty, \ell})$ satisfying (1.1);

▶ We derive Theorems 3 and 4 from Theorem 8.

- ▶ The group $G := \Gamma \times O(N-4)$ satisfies (A_2) if N=4 or $N \ge 6$, and $Fix(G) = \{0\}$ and we choose the homomorphisms ϕ_i as in Theorem 1;
- \triangleright By Theorem 5 there exist a least energy solution $\widehat{\mathbf{u}}_k = (\widehat{u}_{1k}, \dots, \widehat{u}_{\ell k})$ to the system $(\mathcal{S}^{\phi}_{B_1(0), \varepsilon_k})$ and by Theorem 8 a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(\mathcal{S}_{\infty, \ell})$ satisfying (1.1);
- ightharpoonup After passing to a subsequence, $\lim_{k \to \infty} \|\widehat{u}_{ik} w_i(\varepsilon_k^{-1} \cdot)\|_{\varepsilon_k} = 0$ for all $i = 1, \ldots, \ell$, and

$$\lim_{k\to\infty}\sum_{i=1}^{\ell}\|\widehat{u}_{ik}\|_{\varepsilon_k}^2=\lim_{\varepsilon\to0}\frac{2p}{p-2}c_{\varepsilon}^{\ell}(B_1(0))=\frac{2p}{p-2}c_{\infty}^{\ell}=\sum_{i=1}^{\ell}\|w_i\|^2=\widehat{\mathfrak{c}}_m.$$

▶ We derive Theorems 3 and 4 from Theorem 8.

- ▶ The group $G := \Gamma \times O(N-4)$ satisfies (A_2) if N = 4 or $N \ge 6$, and $Fix(G) = \{0\}$ and we choose the homomorphisms ϕ_i as in Theorem 1;
- \triangleright By Theorem 5 there exist a least energy solution $\widehat{\mathbf{u}}_k = (\widehat{u}_{1k}, \dots, \widehat{u}_{\ell k})$ to the system $(\mathcal{S}^{\phi}_{B_1(0), \varepsilon_k})$ and by Theorem 8 a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(\mathcal{S}_{\infty, \ell})$ satisfying (1.1);
- \triangleright By standard arguments we may take positive $\widehat{u}_{1k}, \ldots, \widehat{u}_{mk}$. Then, w_1, \ldots, w_m are also **positive**;

▶ We derive Theorems 3 and 4 from Theorem 8.

- ▶ The group $G := \Gamma \times O(N-4)$ satisfies (A_2) if N=4 or $N \ge 6$, and $Fix(G) = \{0\}$ and we choose the homomorphisms ϕ_i as in Theorem 1;
- \triangleright By Theorem 5 there exist a least energy solution $\widehat{\mathbf{u}}_k = (\widehat{u}_{1k}, \dots, \widehat{u}_{\ell k})$ to the system $(\mathcal{S}^\phi_{B_1(0),\varepsilon_k})$ and by Theorem 8 a least energy solution $\mathbf{w} = (w_1, \dots, w_\ell)$ to the system $(\mathcal{S}_{\infty,\ell})$ satisfying (1.1);
- \triangleright By standard arguments we may take positive $\widehat{u}_{1k}, \ldots, \widehat{u}_{mk}$. Then, w_1, \ldots, w_m are also **positive**;
- ▶ The symmetries ensure that the last ℓm components of $\widehat{\mathbf{u}}_k$ and \mathbf{w} are nonradial and change sign.

```
▶ The group G := \Gamma in Example (i) satisfies (\mathbf{A}_2), and \operatorname{Fix}(G) = \{0\} \times \mathbb{R}^{N-4} has positive dimension if N \geq 5;
```

```
▶ The group G := \Gamma in Example (i) satisfies (\mathbf{A_2}), and \operatorname{Fix}(G) = \{0\} \times \mathbb{R}^{N-4} has positive dimension if N \geq 5; 

▶ For i = 1, \dots, m we take \phi_i \equiv \mathbf{1}, and for i = m+1, \dots, \ell we take \phi_i := \phi as in Example (i);
```

```
Description The group G := \Gamma in Example (i) satisfies (A_2), and Fix(G) = \{0\} \times \mathbb{R}^{N-4} has positive dimension if N \ge 5;

Description For i = 1, \ldots, m we take \phi_i \equiv \mathbf{1}, and for i = m+1, \ldots, \ell we take \phi_i := \phi as in Example (i);

Description By Theorems 5 and 8, there exist a least energy solution \mathbf{u}_k = (u_{1k}, \ldots, u_{\ell k}) to the system (S_{B_1(0), \varepsilon_k}^{\phi}) and, for each i = 1, \ldots, \ell, a sequence (\zeta_{ik}) in B_1(0) \cap Fix(G) and a least energy solution \widetilde{v}_i to the problem (\mathcal{P}_i^{\phi_i});
```

- ▶ The group $G := \Gamma$ in Example (i) satisfies (A_2), and Fix(G) = $\{0\} \times \mathbb{R}^{N-4}$ has positive dimension if $N \ge 5$;
- ▶ For i = 1, ..., m we take $\phi_i \equiv \mathbf{1}$, and for $i = m + 1, ..., \ell$ we take $\phi_i := \phi$ as in Example (i);
- \triangleright By Theorems 5 and 8, there exist a **least energy solution** $\mathbf{u}_k = (u_{1k}, \dots, u_{\ell k})$ to the system $(\mathcal{S}^\phi_{B_1(0), \varepsilon_k})$ and, for each $i = 1, \dots, \ell$, a sequence (ζ_{ik}) in $B_1(0) \cap \operatorname{Fix}(G)$ and a **least energy solution** \widetilde{v}_i to the problem $(\mathcal{P}^{\phi_i}_i)$;
- ▷ After passing to a subsequence,

$$\lim_{k \to \infty} \varepsilon_k^{-1} \mathrm{dist}(\zeta_{ik}, \partial B_1(0)) = \infty, \quad \lim_{k \to \infty} \varepsilon_k^{-1} |\zeta_{ik} - \zeta_{jk}| = \infty \text{ if } i \neq j,$$

$$\lim_{k \to \infty} \|u_{ik} - \widetilde{v}_i(\varepsilon_k^{-1}(\cdot - \zeta_{ik}))\|_{\varepsilon_k} = 0, \text{ for all } i, j = 1, \dots, \ell, \text{ and}$$

$$\lim_{k\to\infty}\sum_{i=1}^{\ell}\|u_{ik}\|_{\varepsilon_k}^2=\lim_{\varepsilon\to0}\frac{2p}{p-2}c_{\varepsilon}^{\ell}(B_1(0))=\frac{2p}{p-2}\sum_{i=1}^{\ell}c_i=\sum_{i=1}^{\ell}\|\widetilde{v}_i\|^2=\mathfrak{c}_m.$$

Continuation of the Proof of Theorem 4.

▷ As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;

- ▷ As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;

- ▷ As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;
- \triangleright There exists $\vartheta_i \in \operatorname{Fix}(G)$ such that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ satisfies (1.2);

- ▷ As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;
- ▷ If $i \in \{m+1, \dots, \ell\}$, then $\widetilde{v}_i \in H^1(\mathbb{R}^N)^{\phi}$ with ϕ as in Example (i), i.e., \widetilde{v}_i satisfies $\widetilde{v}_i(z_1, z_2, x) = \widetilde{v}_i(\mathrm{e}^{\mathrm{i}\vartheta}z_1, \mathrm{e}^{\mathrm{i}\vartheta}z_2, x)$ for all $\vartheta \in [0, 2\pi)$ and $\widetilde{v}_i(z_1, z_2, x) = -\widetilde{v}_i(z_2, z_1, x)$, for all $(z_1, z_2, x) \in \mathbb{C} \times \mathbb{C} \times \mathbb{R}^{N-4}$;
- ightharpoonup There exists $\vartheta_i \in \operatorname{Fix}(G)$ such that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ satisfies (1.2);
- ▶ Let $\xi_{ik} := \zeta_{ik} + \varepsilon_k \vartheta_i$, so that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ is radial if i = 1, ..., m and it satisfies (1.2) if $i = m + 1, ..., \ell$;

- As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;
- ightharpoonup There exists $\vartheta_i \in \operatorname{Fix}(G)$ such that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ satisfies (1.2);
- ▶ Let $\xi_{ik} := \zeta_{ik} + \varepsilon_k \vartheta_i$, so that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ is radial if i = 1, ..., m and it satisfies (1.2) if $i = m + 1, ..., \ell$;
- $ightharpoonup As \ arepsilon_k o 0$, we have that $\ \xi_{ik} \in B_1(0)$ for k large enough. From the corresponding statements for ζ_{ik} and \widetilde{v}_i one derives the remaining conclusions involving the component functions;

Continuation of the Proof of Theorem 4.

- ▶ As before, $\tilde{v}_1, \dots, \tilde{v}_m$ are also **positive** and since (\mathcal{P}_i) has a **unique** positive radial solution v_i , any other positive solution is a translation of it;
- ightharpoonup There exists $\vartheta_i \in \operatorname{Fix}(G)$ such that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ satisfies (1.2);
- ▶ Let $\xi_{ik} := \zeta_{ik} + \varepsilon_k \vartheta_i$, so that $v_i(y) := \widetilde{v}_i(y + \vartheta_i)$ is radial if i = 1, ..., m and it satisfies (1.2) if $i = m + 1, ..., \ell$;
- ightharpoonup As $\varepsilon_k \to 0$, we have that $\xi_{ik} \in B_1(0)$ for k large enough. From the corresponding statements for ζ_{ik} and \widetilde{v}_i one derives the remaining conclusions involving the component functions;
- \triangleright The inequality $\mathfrak{c}_m < \widehat{\mathfrak{c}}_m$ follows immediately from Proposition 6.

30

Thank You For Your Attention!