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Introduction



Introduction

I We study the existence and asymptotic behavior of semi-positive

solutions, i. e. having positive and sign-changing components

to the singularly perturbed system of elliptic equations
−ε2∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1
0 (Ω), ui 6= 0, i = 1, . . . , `,

(SΩ,ε)

I ε > 0 is a small parameter, Ω is a bounded smooth domain in RN ,

I N ≥ 4, µi > 0, λij = λji < 0, αij, βij > 1, αij = βji,

αij + βij = p ∈ (2, 2∗),

and 2∗ := 2N
N−2 is the critical Sobolev exponent.
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Introduction

I If Ω = B1(0) we obtain solutions exhibiting two different types of

asymptotic behavior as ε→ 0:

(1): the limit profile is a rescaling of a solution with positive and

nonradial sign-changing components of the limit coupled system
−∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1(RN), ui 6= 0, i = 1, . . . , `.

(S∞,`)

(2): the limit profile is a solution of the uncoupled system, i.e.,

after rescaling and translation, the limit profile of the i-th component

is a positive or a nonradial sign-changing solution to the equation

−∆ui + ui = µi |ui |p−2ui , ui ∈ H1(RN), ui 6= 0.
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Physical Motivation

I This system arises as a model for various physical phenomena, in

particular in the study of standing waves for a mixture of

Bose-Einstein condensates of ` different hyperfine states which

overlap in space, see for example:

(1) - Esry, B. D.; Greene, Chris H.; Burke, Jr., James P.; Bohn,

John L: Hartree-Fock theory for double condensates, Phys. Rev.

Lett. 78 (1997), 3594-3597.

I We consider the case in which the interaction between particles in

the same state is attractive (µi > 0) and the interaction between

particles in any two different states is repulsive (λij < 0).
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Main References

I Lin and Wei (2005) (for N = 2, 3)

- Described the behavior of positive least energy solutions for the

system (SΩ,ε) with cubic nonlinearity (αij = βij = 2) as ε→ 0;

- Showed that each component is a spike, i.e., a rescaling of the

positive ground state solution to the problem{
−∆u + u = µi |u|p−2u,

u ∈ H1(RN), u 6= 0.
(Pi )

(2) - Lin, Tai-Chia; Wei, Juncheng: Spikes in two coupled

nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal.

Non Linéaire 22 (2005), no. 4, 403-439.
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About System (S∞,`)

I Lin and Wei (2005) - It does NOT have a ground state solution;

I Sirakov (2007) - It does have a positive least energy radial

solution;

I Sato and Wang (2015) - There exists a least energy radial

solution with cubic nonlinearity (hence, N ≤ 3) with positive and

sign-changing components.

(6) - Lin, Tai-Chia; Wei, Juncheng: Ground state of N coupled

nonlinear Schrödinger equations in Rn, n ≤ 3. Comm. Math.

Phys. 255 (2005), no. 3, 629-653.

(7) - Sirakov, Boyan: Least energy solitary waves for a system

of nonlinear Schrödinger equations in Rn. Comm. Math. Phys.

271 (2007), no. 1, 199-221.

(8) - Sato, Yohei; Wang, Zhi-Qiang: On the least energy

sign-changing solutions for a nonlinear elliptic system. Discrete

Contin. Dyn. Syst. 35 (2015), no. 5, 2151-2164.
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Multiplicity of Semi-Positive Solutions to System (S∞,`)

I We provide nonradial solutions with positive and sign-changing

components:

Theorem (1) - (Multiplicity of Semi-Positive Solutions)

Let N = 4 or N ≥ 6. For any given 0 ≤ m ≤ `, the system (S∞,`) has a

solution w = (w1, . . . ,w`) whose first m components w1, . . . ,wm are positive

and whose last `−m components wm+1, . . . ,w` are nonradial and change

sign. Furthermore, w satisfies
wi (z1, z2, x) = wi (e

iϑz1, e
iϑz2, gx) for all ϑ ∈ [0, 2π), g ∈ O(N − 4), i = 1, . . . , `,

wi (z1, z2, x) = wi (z2, z1, x) if i = 1, . . . ,m,

wi (z1, z2, x) = −wi (z2, z1, x) if i = m + 1, . . . , `,

(1.1)

for all (z1, z2, x) ∈ C× C× RN−4 ≡ RN , and it has a least energy among all

nontrivial solutions with these symmetry properties.
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Nonexistence Result for N = 5

I It is impossible to derive a similar result for N = 5;

I A key role is played by the space of fixed points of the subgroup G

of symmetries that guarantees (1.1):

Theorem (2) - (Existence/Nonexistence of a Least Energy Solution)

Let ` ≥ 2. System (S∞,`) has a least energy solution satisfying (1.1) if

and only if Fix(G ) := {x ∈ RN : gx = x ∀ g ∈ G} = {0}.

I For N = 5 there is no such a subgroup G of symmetries satisfying

Fix(G ) = {0}.
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About the singularly perturbed system (SΩ,ε)

I Set ‖u‖2
ε :=

1

εN

∫
RN

[
ε2|∇u|2 + u2

]
and ‖u‖ := ‖u‖1 for ε > 0 and

u ∈ H1(RN), we obtain two different asymptotic behaviors as ε→ 0:

Theorem (3) - (Coupled Spikes Solutions)

Let N = 4 or N ≥ 6, and Ω = B1(0). Then, for any given 0 ≤ m ≤ ` and any

sequence (εk) of positive numbers converging to zero, there exists solution

ûk = (û1k , . . . , û`k) to the system (SΩ,εk ) whose first m components are

positive and whose last `−m components are nonradial and change sign,

with the following limit profile:

There exists a solution w = (w1, . . . ,w`) to the system (S∞,`) such that, after

passing to a subsequence, lim
k→∞

‖ûik − wi (ε
−1
k · )‖εk = 0 for all i = 1, . . . , `.

The first m components of w are positive, its last `−m components are

nonradial and change sign, and w satisfies (1.1). Therefore,

lim
k→∞

∑̀
i=1

‖ûik‖2
εk =

∑̀
i=1

‖wi‖2 =: ĉm.
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‖ûik − wi (ε
−1
k · )‖εk = 0 for all i = 1, . . . , `.

The first m components of w are positive, its last `−m components are

nonradial and change sign, and w satisfies (1.1). Therefore,

lim
k→∞

∑̀
i=1

‖ûik‖2
εk =

∑̀
i=1

‖wi‖2 =: ĉm.
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Theorem (4) - (Uncoupled Spikes Solutions)

Let N ≥ 5 and Ω = B1(0). Then, for any given 0 ≤ m ≤ ` and any sequence

(εk) of positive numbers converging to zero, there exists solution

uk = (u1k , . . . , u`k) to the system (SΩ,εk ) whose first m components are

positive and whose last `−m components are nonradial and change sign,

with the following limit profile:

For each i = 1, . . . , `, there exist a sequence (ξik) in B1(0) and a solution vi to

the problem (Pi ) such that, after passing to a subsequence,

lim
k→∞

ε−1
k dist(ξik , ∂B1(0)) =∞, lim

k→∞
ε−1

k |ξik − ξjk| =∞ if i 6= j,

lim
k→∞

‖uik − vi (ε
−1
k ( · − ξik))‖εk = 0.

v1, . . . , vm are positive and radial functions, while vm+1, . . . , v` are sign-

changing, nonradial functions and for (z1, z2, x) ∈ C× C× RN−4 they satisfyvi (z1, z2, x) = vi (e
iϑz1, e

iϑz2, gx) for all ϑ ∈ [0, 2π), g ∈ O(N − 4),

vi (z1, z2, x) = −vi (z2, z1, x), i = m + 1, . . . , `

(1.2)
Furthermore, lim

k→∞

∑̀
i=1

‖uik‖2
εk =

∑̀
i=1

‖vi‖2 =: cm, satisfies cm < ĉm, with ĉm as

in Theorem 3, if N ≥ 6.
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Theorem (4) - (Uncoupled Spikes Solutions)
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(εk) of positive numbers converging to zero, there exists solution

uk = (u1k , . . . , u`k) to the system (SΩ,εk ) whose first m components are

positive and whose last `−m components are nonradial and change sign,

with the following limit profile:

For each i = 1, . . . , `, there exist a sequence (ξik) in B1(0) and a solution vi to

the problem (Pi ) such that, after passing to a subsequence,

lim
k→∞

ε−1
k dist(ξik , ∂B1(0)) =∞, lim

k→∞
ε−1

k |ξik − ξjk| =∞ if i 6= j,

lim
k→∞

‖uik − vi (ε
−1
k ( · − ξik))‖εk = 0.

v1, . . . , vm are positive and radial functions, while vm+1, . . . , v` are sign-

changing, nonradial functions and for (z1, z2, x) ∈ C× C× RN−4 they satisfyvi (z1, z2, x) = vi (e
iϑz1, e

iϑz2, gx) for all ϑ ∈ [0, 2π), g ∈ O(N − 4),

vi (z1, z2, x) = −vi (z2, z1, x), i = m + 1, . . . , `

(1.2)
Furthermore, lim

k→∞

∑̀
i=1

‖uik‖2
εk =

∑̀
i=1

‖vi‖2 =: cm, satisfies cm < ĉm, with ĉm as
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Behavior of Solutions

I The solutions of system (SΩ,ε) given by Theorem 4 behave as

expected in the repulsive case λij < 0:

They concentrate at points that are far from each other and

from the boundary of the ball;

I The solutions given by Theorem 3 behave as in the attractive case

λij > 0: all components concentrate at the origin;

I The sign of the interaction coefficient λij is not determinant in

the segregation behavior of higher energy solutions;

I Since they have higher energy, they enjoy more symmetries than

those given by Theorem 4.
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Concentrating Phenomena of Solutions as ε→ 0

I These are the first examples in the literature that show this kind

of asymptotic behavior for the elliptic system (SΩ,ε);

I As ε→ 0 the components of the solution of the system

concentrate at fixed points of the group action:

I If the space of fixed points is trivial, all components will necessarily

concentrate at the origin;

I If the fixed-point space has positive dimension, all components will

move far away from each other;

I For N = 3 there are no symmetries with the properties required to

produce nonradial sign-changing solutions;

13



Concentrating Phenomena of Solutions as ε→ 0

I These are the first examples in the literature that show this kind

of asymptotic behavior for the elliptic system (SΩ,ε);

I As ε→ 0 the components of the solution of the system

concentrate at fixed points of the group action:

I If the space of fixed points is trivial, all components will necessarily

concentrate at the origin;

I If the fixed-point space has positive dimension, all components will

move far away from each other;

I For N = 3 there are no symmetries with the properties required to

produce nonradial sign-changing solutions;

13



Concentrating Phenomena of Solutions as ε→ 0

I These are the first examples in the literature that show this kind

of asymptotic behavior for the elliptic system (SΩ,ε);

I As ε→ 0 the components of the solution of the system

concentrate at fixed points of the group action:

I If the space of fixed points is trivial, all components will necessarily

concentrate at the origin;

I If the fixed-point space has positive dimension, all components will

move far away from each other;

I For N = 3 there are no symmetries with the properties required to

produce nonradial sign-changing solutions;

13



Concentrating Phenomena of Solutions as ε→ 0

I These are the first examples in the literature that show this kind

of asymptotic behavior for the elliptic system (SΩ,ε);

I As ε→ 0 the components of the solution of the system

concentrate at fixed points of the group action:

I If the space of fixed points is trivial, all components will necessarily

concentrate at the origin;

I If the fixed-point space has positive dimension, all components will

move far away from each other;

I For N = 3 there are no symmetries with the properties required to

produce nonradial sign-changing solutions;

13



Theoretical Background



A Suitable Subgroup of Symmetries

I Let G be a closed subgroup of O(N), denote by

Gx := {gx : g ∈ G} the G -orbit of x ∈ RN ;

I Let φ : G → Z2 := {−1, 1} be a continuous homomorphism of

groups with the following property:

(A1) If φ is surjective, then there exists x0 ∈ RN such that Kφx0 6= Gx0

where Kφ := ker φ.

I Let Θ be an open subset of RN which is G -invariant. A function

u : Θ→ R is φ-equivariant if u(gx) = φ(g)u(x) ∀g ∈ G, x ∈ Θ;

I Define H1
0 (Θ)φ := {u ∈ H1

0 (Θ) : u is φ-equivariant}. Assumption

(A1) guarantees that H1
0 (Θ)φ has infinite dimension;

I If φ ≡ 1 is the trivial homomorphism, then H1
0 (Θ)φ is the space of

G -invariant functions in H1
0 (Θ);

I If φ is surjective, then every nontrivial function u ∈ H1
0 (Θ)φ is

nonradial and changes sign.
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Relevant Examples

(i) Let Γ be the group generated by {eiϑ : ϑ ∈ [0, 2π)} ∪ {τ} acting on

RN by

eiϑ(z1, z2, x) = (eiϑz1, e
iϑz2, x) and τ(z1, z2, x) = (z2, z1, x)

for all (z1, z2, x) ∈ C× C× RN−4 ≡ RN and φ : Γ→ Z2 be the

homomorphism given by φ(eiϑ) := 1 and φ(τ) := −1.

Hence (A1) is satisfied since the kernel of φ is the group

Kφ := {eiϑ : ϑ ∈ [0, 2π)}

and the point x0 = (1, 0, 0) ∈ C× C× RN−4 is such that

Kφx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} and

Γx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} ∪ {(0, eiϑ, 0) : ϑ ∈ [0, 2π)};

15



Relevant Examples

(i) Let Γ be the group generated by {eiϑ : ϑ ∈ [0, 2π)} ∪ {τ} acting on

RN by

eiϑ(z1, z2, x) = (eiϑz1, e
iϑz2, x) and τ(z1, z2, x) = (z2, z1, x)

for all (z1, z2, x) ∈ C× C× RN−4 ≡ RN and φ : Γ→ Z2 be the

homomorphism given by φ(eiϑ) := 1 and φ(τ) := −1.

Hence (A1) is satisfied since the kernel of φ is the group

Kφ := {eiϑ : ϑ ∈ [0, 2π)}

and the point x0 = (1, 0, 0) ∈ C× C× RN−4 is such that

Kφx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} and

Γx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} ∪ {(0, eiϑ, 0) : ϑ ∈ [0, 2π)};

15



Relevant Examples

(i) Let Γ be the group generated by {eiϑ : ϑ ∈ [0, 2π)} ∪ {τ} acting on

RN by

eiϑ(z1, z2, x) = (eiϑz1, e
iϑz2, x) and τ(z1, z2, x) = (z2, z1, x)

for all (z1, z2, x) ∈ C× C× RN−4 ≡ RN and φ : Γ→ Z2 be the

homomorphism given by φ(eiϑ) := 1 and φ(τ) := −1.

Hence (A1) is satisfied since the kernel of φ is the group

Kφ := {eiϑ : ϑ ∈ [0, 2π)}

and the point x0 = (1, 0, 0) ∈ C× C× RN−4 is such that

Kφx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} and

Γx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} ∪ {(0, eiϑ, 0) : ϑ ∈ [0, 2π)};

15



Relevant Examples

(ii) Let G := Γ×O(N− 4) with Γ as in (i) and g ∈ O(N − 4) acting as

g(z1, z2, x) = (z1, z2, gx) ∀ (z1, z2, x) ∈ C× C× RN−4 ≡ RN .

Let φ : G → Z2 be the homomorphism given by φ(eiϑ) := 1,

φ(τ) := −1 and φ(g) := 1 for all g ∈ O(N − 4). Then,

Kφ := ker φ = {eiϑ : ϑ ∈ [0, 2π)} × O(N − 4)

and, for x0 = (1, 0, 0) ∈ C× C× RN−4, one has

Kφx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} and

Gx0 = {(eiϑ, 0, 0) : ϑ ∈ [0, 2π)} ∪ {(0, eiϑ, 0) : ϑ ∈ [0, 2π)},
so (A1) is satisfied.
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Variational Setting

I Fix a closed subgroup G of O(N) and, for each i = 1, . . . , `, a

continuous homomorphism φi : G → Z2 satisfying (A1);

I If Θ is a G -invariant open subset of RN , we consider the system
−ε2∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1
0 (Θ)φi , ui 6= 0, i = 1, . . . , `,

(SφΘ,ε)

with ε > 0, µi > 0, λij = λji < 0, αij , βij > 1, αij = βji and

αij + βij = p ∈ (2, 2∗).

I Set H`(Θ) := H1
0 (Θ)φ1 × · · · × H1

0 (Θ)φ` , and denote an element in

H`(Θ) by u = (u1, . . . , u`). For each ε > 0 we define the equivalent

norms

‖u‖`,ε :=

(∑̀
i=1

‖ui‖2
ε

)1/2

,where ‖ui‖2
ε :=

1

εN

∫
RN

[
ε2|∇ui |2 + u2

i

]
.

17



Variational Setting

I Fix a closed subgroup G of O(N) and, for each i = 1, . . . , `, a

continuous homomorphism φi : G → Z2 satisfying (A1);

I If Θ is a G -invariant open subset of RN , we consider the system
−ε2∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1
0 (Θ)φi , ui 6= 0, i = 1, . . . , `,

(SφΘ,ε)

with ε > 0, µi > 0, λij = λji < 0, αij , βij > 1, αij = βji and

αij + βij = p ∈ (2, 2∗).

I Set H`(Θ) := H1
0 (Θ)φ1 × · · · × H1

0 (Θ)φ` , and denote an element in

H`(Θ) by u = (u1, . . . , u`). For each ε > 0 we define the equivalent

norms

‖u‖`,ε :=

(∑̀
i=1

‖ui‖2
ε

)1/2

,where ‖ui‖2
ε :=

1

εN

∫
RN

[
ε2|∇ui |2 + u2

i

]
.

17



Variational Setting

I Fix a closed subgroup G of O(N) and, for each i = 1, . . . , `, a

continuous homomorphism φi : G → Z2 satisfying (A1);

I If Θ is a G -invariant open subset of RN , we consider the system
−ε2∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1
0 (Θ)φi , ui 6= 0, i = 1, . . . , `,

(SφΘ,ε)

with ε > 0, µi > 0, λij = λji < 0, αij , βij > 1, αij = βji and

αij + βij = p ∈ (2, 2∗).

I Set H`(Θ) := H1
0 (Θ)φ1 × · · · × H1

0 (Θ)φ` , and denote an element in

H`(Θ) by u = (u1, . . . , u`). For each ε > 0 we define the equivalent

norms

‖u‖`,ε :=

(∑̀
i=1

‖ui‖2
ε

)1/2

,where ‖ui‖2
ε :=

1

εN

∫
RN

[
ε2|∇ui |2 + u2

i

]
.

17



Variational Setting

I Consider the functional J `ε : H`(Θ)→ R given by

J `ε (u) :=
1

2

∑̀
i=1

‖ui‖2
ε −

1

p

∑̀
i=1

1

εN

∫
RN

µi |ui |p −
1

2

∑̀
i,j=1
j 6=i

1

εN

∫
RN

λij |uj |αij |ui |βij ,

which is of class C1.

I Since λij = λji , βij = αji and αij + βij = p, its partial derivatives are

∂iJ `ε (u)v =
1

εN

[ ∫
RN

(ε2∇ui · ∇v + uiv)

−
∫
RN

µi |ui |p−2uiv −
∑̀
j=1
j 6=i

∫
RN

λijβij |uj |αij |ui |βij−2uiv
]
, (2.1)

for v ∈ H1
0 (Θ)φi and i = 1, . . . , `.

I By the principle of symmetric criticality, the solutions to system (SφΘ,ε)

are the critical points of J `ε whose components ui are nontrivial.
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The Nehari-Type Set

I All solutions belong to the Nehari-type set

N `
ε (Θ) :=

{
u ∈ H`(Θ) : ui 6= 0, ∂iJ `ε (u)ui = 0, ∀ i = 1, . . . , `

}
.

I Note that

∂iJ `ε (u)ui = ‖ui‖2
ε −

1

εN

∫
RN

µi |ui |p −
∑̀
j=1
j 6=i

1

εN

∫
RN

λijβij |uj |αij |ui |βij .

(2.2)
I Define

c`ε(Θ) := inf
u∈N `

ε (Θ)
J `ε (u).

I From (2.1), if u = (u1, u2, . . . , u`) ∈ N `
ε (Θ) one sees that

J `ε (u) =
p − 2

2p

∑̀
i=1

‖ui‖2
ε =

p − 2

2p
‖u‖2

`,ε. (2.3)
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The Existence of a Least Energy Solution

I A solution to the system (SφΘ,ε) such that J `ε (u) = c`ε(Θ) is called a

least energy solution to (SφΘ,ε).

Theorem (5) - (Existence of minimizers)

If Θ is a bounded G-invariant domain in RN , then, for each ε > 0,

system (SφΘ,ε) has a least energy solution.
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The Limit System



Establishing the Nehari Levels

I Let φi and G satisfy (A1) and also the following property:

(A2) For every x ∈ RN , the G -orbit of x is either infinite, or Gx = {x}.

I The limit system under the φi -equivariant component functions is
−∆ui + ui = µi |ui |p−2ui +

∑̀
j=1
j 6=i

λijβij |uj |αij |ui |βij−2ui ,

ui ∈ H1(RN)φi , ui 6= 0, 1 < i ≤ `.

(Sφ∞,`)

I Set H` := H1(RN)φ1 × · · · × H1(RN)φ` , J `∞ := J `1 : H` → R and

N `
∞ := N `

1 (RN) and also let c`∞ := inf
u∈N `

∞

J `∞(u).

I For each i = 1, . . . , `, consider the problem{
−∆u + u = µi |u|p−2u,

u ∈ H1(RN)φi , u 6= 0.
(Pφi

i )
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Establishing the Nehari Levels

I Its solutions are the critical points of Ji : H1(RN)φi → R given by

Ji (u) := 1
2

∫
RN

(|∇u|2 + u2)− 1

p

∫
RN

|u|p, and belong to the Nehari

manifold Ni := {u ∈ H1(RN)φi : u 6= 0, J ′i (u)u = 0}. We set

ci := inf
u∈Ni

Ji (u).

I A solution u to (Sφ∞,`) satisfying J `∞(u) = c`∞ is called a least

energy solution to (Sφ∞,`). Similarly, a solution u to (Pφi

i )

satisfying Ji (u) = ci is called a least energy solution to (Pφi

i ).

I Concerning to the fundamental role of the G-fixed-point space

Fix(G ) := {x ∈ RN : gx = x for all g ∈ G}

we prove the following results.
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The Comparison of the Nehari Levels

Proposition (6) - (Comparing the Nehari Levels)

The following statements hold true:

(i) c`∞ ≥
∑̀
i=1

ci .

(ii) If Fix(G ) has positive dimension, then c`∞ =
∑̀
i=1

ci .

(iii) If ` ≥ 2 and c`∞ =
∑̀
i=1

ci , then c`∞ is NOT attained.
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Behavior of the Minimizing Sequence of System (Sφ∞,`)

Theorem (7) - (The Minimizing Sequences of System (Sφ∞,`))

Let ` ≥ 2 and uk = (u1k , . . . , u`k) ∈ N `
∞ be such that J `∞(uk)→ c`∞.

(I ) If Fix(G) = {0}, then there exists a least energy solution

w = (w1, . . . ,w`) to the system (Sφ∞,`) such that, after passing to a

subsequence, lim
k→∞

‖uik − wi‖ = 0 for all i = 1, . . . , `, and

c`∞ >
∑̀
i=1

ci . Moreover, if uik ≥ 0 for all k ∈ N, then wi ≥ 0.

(II ) If dim(Fix(G )) > 0, then, for each i = 1, . . . , `, there exist (ξik) in

Fix(G ) and a least energy solution vi to the problem (Pφi

i ) such

that, after passing to a subsequence, lim
k→∞

|ξik − ξjk | =∞ if i 6= j ,

lim
k→∞

‖uik − vi ( · − ξik)‖ = 0 for all i , j = 1, . . . , `, and c`∞ =
∑̀
i=1

ci.

Moreover, if uik ≥ 0 for all k ∈ N, then vi ≥ 0.
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Behavior of the Minimizing Sequence of System (Sφ∞,`)

I Theorem 2 follows straightway from Proposition 6 and Theorem 7;

I Theorem 1 follows by applying Theorem 7 for a suitable subgroup G

and its homomorphisms φi :

Proof of Theorem 1.

. The group G := Γ×O(N− 4) introduced in Example (ii) satisfies (A2) if

either N = 4 or N ≥ 6, and Fix(G) = {0};
. For i = 1, . . . ,m we set φi ≡ 1, and for i = m + 1, . . . , ` we also take

φi = φ as in Example (ii);

. Applying Theorem 7 we obtain a least energy solution w = (w1, . . . ,w`)

to the system (S∞,`) satisfying (1.1);

. By standard arguments we may take w1, . . . ,wm to be positive;

. The symmetries ensure that the last `−m components are nonradial

and change sign.
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The Asymptotic Behavior of

Minimizers



The Limit Profile of the Least Energy Solutions

I As before we assume that (A1)− (A2) are satisfied;

I Ω is a G -invariant bounded domain in RN and that 0 ∈ Ω.

Theorem (8) - (The Limit Profile of the Minimizers)

For any given sequence (εk) of positive numbers converging to zero,

there exists a least energy solution uk = (u1k , . . . , u`k) to the system

(SφΩ,εk ) with the following limit profile:

(I ) If Fix(G) = {0}, then there exists a least energy solution

w = (w1, . . . ,w`) to the system (Sφ∞,`) such that, after passing to a

subsequence,

lim
k→∞

‖uik − wi (ε
−1
k · )‖εk = 0 for all i = 1, . . . , `,

and lim
ε→0

c`ε(Ω) = c`∞.

Moreover, wi ≥ 0 if uik ≥ 0 for all k ∈ N.
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there exists a least energy solution uk = (u1k , . . . , u`k) to the system

(SφΩ,εk ) with the following limit profile:

(I ) If Fix(G) = {0}, then there exists a least energy solution

w = (w1, . . . ,w`) to the system (Sφ∞,`) such that, after passing to a

subsequence,

lim
k→∞

‖uik − wi (ε
−1
k · )‖εk = 0 for all i = 1, . . . , `,

and lim
ε→0

c`ε(Ω) = c`∞.

Moreover, wi ≥ 0 if uik ≥ 0 for all k ∈ N.
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The Limit Profile of the Least Energy Solutions

(II ) If dim(Fix(G )) > 0, then, for each i = 1, . . . , `, there exist a

sequence (ζik) in Ω ∩ Fix(G ) and a least energy solution vi to the

problem (Pφi

i ) such that, after passing to a subsequence,

lim
k→∞

ε−1
k dist(ζik , ∂Ω) =∞, lim

k→∞
ε−1
k |ζik − ζjk | =∞ if i 6= j ,
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k→∞

‖uik − vi (ε
−1
k ( · − ζik))‖εk = 0, for all i , j = 1, . . . , `,

and lim
ε→0

c`ε(Ω) =
∑̀
i=1

ci .

Moreover, vi ≥ 0 if uik ≥ 0 for all k ∈ N.
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Proving our Main Results

I We derive Theorems 3 and 4 from Theorem 8.

Proof of Theorem 3.

. The group G := Γ× O(N − 4) satisfies (A2) if N = 4 or N ≥ 6, and

Fix(G) = {0} and we choose the homomorphisms φi as in Theorem 1;

. By Theorem 5 there exist a least energy solution ûk = (û1k , . . . , û`k) to

the system (SφB1(0),εk
) and by Theorem 8 a least energy solution

w = (w1, . . . ,w`) to the system (S∞,`) satisfying (1.1);

. After passing to a subsequence, lim
k→∞

‖ûik − wi (ε
−1
k · )‖εk = 0 for all

i = 1, . . . , `, and

lim
k→∞

∑̀
i=1

‖ûik‖2
εk = lim

ε→0

2p

p − 2
c`ε(B1(0)) =

2p

p − 2
c`∞ =

∑̀
i=1

‖wi‖2 = ĉm.

. By standard arguments we may take positive û1k , . . . , ûmk . Then,

w1, . . . ,wm are also positive;

. The symmetries ensure that the last `−m components of ûk and w are

nonradial and change sign.
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Proving our Main Results

Proof of Theorem 4.

. The group G := Γ in Example (i) satisfies (A2), and

Fix(G ) = {0} × RN−4 has positive dimension if N ≥ 5;

. For i = 1, . . . ,m we take φi ≡ 1, and for i = m + 1, . . . , ` we take

φi := φ as in Example (i);

. By Theorems 5 and 8, there exist a least energy solution

uk = (u1k , . . . , u`k) to the system (SφB1(0),εk
) and, for each

i = 1, . . . , `, a sequence (ζik) in B1(0) ∩ Fix(G ) and a least energy

solution ṽi to the problem (Pφi

i );

. After passing to a subsequence,

lim
k→∞

ε−1
k dist(ζik , ∂B1(0)) =∞, lim

k→∞
ε−1
k |ζik − ζjk | =∞ if i 6= j ,

lim
k→∞

‖uik − ṽi (ε
−1
k ( · − ζik))‖εk = 0, for all i , j = 1, . . . , `, and

lim
k→∞

∑̀
i=1

‖uik‖2
εk

= lim
ε→0

2p

p − 2
c`ε(B1(0)) =

2p

p − 2

∑̀
i=1

ci =
∑̀
i=1

‖ṽi‖2 = cm.
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Proving our Main Results

Continuation of the Proof of Theorem 4.

. As before, ṽ1, . . . , ṽm are also positive and since (Pi ) has a unique

positive radial solution vi , any other positive solution is a translation of it;

. If i ∈ {m + 1, . . . , `}, then ṽi ∈ H1(RN)φ with φ as in Example (i), i.e., ṽi

satisfies ṽi (z1, z2, x) = ṽi (e
iϑz1, e

iϑz2, x) for all ϑ ∈ [0, 2π) and

ṽi (z1, z2, x) = −ṽi (z2, z1, x), for all (z1, z2, x) ∈ C× C× RN−4;

. There exists ϑi ∈ Fix(G) such that vi (y) := ṽi (y + ϑi ) satisfies (1.2);

. Let ξik := ζik + εkϑi , so that vi (y) := ṽi (y + ϑi ) is radial if i = 1, . . . ,m

and it satisfies (1.2) if i = m + 1, . . . , `;

. As εk → 0, we have that ξik ∈ B1(0) for k large enough. From the

corresponding statements for ζik and ṽi one derives the remaining

conclusions involving the component functions;

. The inequality cm < ĉm follows immediately from Proposition 6.
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. The inequality cm < ĉm follows immediately from Proposition 6.

30



Proving our Main Results

Continuation of the Proof of Theorem 4.
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satisfies ṽi (z1, z2, x) = ṽi (e
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conclusions involving the component functions;
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