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For 1 < p < oo, we consider the p-Laplace equation
Apu = div(|DulP~2Du) = 0,

is the Euler-Lagrange equation associated to the functional

1
- / |DulP.
p

In this case, we pointed out well-known properties:

1. The equation is in divergence form;
2. The variational structure of the equation;

3. Every weak solution of p-Laplace equation in the distribution
sense is C1'® for some a > 0.
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We study regularity theory for the viscosity solutions to

ur(x, t) — A,’;lu(x7 t)="f(x,t) in Qi

where
1. The normalized p-Laplace operator is defined by
ANu = |Dul*PA,u

Du Du \ .
= AU+(p_2)<D2UW,W>,

2. The right-hand side f is a continuous and bounded function in

@1 and 1 < p < .
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Some remarks:

1. The equation above can be seen as a uniformly parabolic
model in nondivergence form, with constants min{(p —1,1)}
and max{(p —1),1};

2. This model has a singularity on the set {Du = 0}, which

implies that classical C1T-regularity can not be applied
directly.
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The normalized p-Laplace equation appears in many branches of

mathematics.

e For p—1,
ue(x,t) — AMu(x, t) =0

is the level set formulation of the mean curvature flow.

e Forl < p< oo,
ue(x, t) — AN u(x, t) = f(x, t)

This equation arises from tug-of-war stochastic games with noise.

e For p — o0,

ue(x,t) — AN u(x,t) =0

This equation finds an application in image processing.



Viscosity solutions

Let 1 < p < oo and f is a continuous function in Q;. We say that
u € C(Q1) is a viscosity subsolution to

ue(x, t) — Apu(x, t) = f(x, t)

if, for every (xo, to) € Q1 and ¢ € C?(@1) such that u — ¢ has a
local maximum at (xp, to), we have

got(xo,t ) gp(Xo,to) < f(Xo,t‘o)7 if D(p(Xo,to) 7£O

wt(x0, to) — A<P(X0, t0) — (P — 2)Amax(D?¢(x0, t0))

< f(xo, to), if Dyp(xo0,t0) = 0and p > 2.
et(x0, t0) — Ap(x0, to) — (P — 2)Amin(D?¢(x0, 1))

< f(Xo,to) if D(p(Xo,to):Oand l<p<2



Viscosity solution

Conversely, we say that u € C(Qy) is a viscosity supersolution to

ue(x, t) — Apu(x, t) = f(x, t)

if, (x0,t0) € @1 and ¢ € C?(Q1) such that u — ¢ has a local
minimum at (xo, tp), we have

et(x0, to) — ANo(x0, to) > f(x0, to), if Do(xo, to) # 0

@t(x0, t0) — Bp(x0, to) — (P — 2)Amin(D?¢(x0, o))

> f(xo, to), if Dp(xo,to) =0and p > 2.
@t(x0, t0) — Ap(x0, to) — (P — 2)Amax(D?¢(x0, t0))

> f(X(),t‘o)7 if D@(Xo,to)zoand l<p<2

We call u is a viscosity solution, when it is subsolution and

supersolution.
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Previous developments

Manfredi, Parviainen and Rossi (2010): The authors characterized
solutions to

ur(x, t) — AQIU(X, t) =0,

in terms of an asymptotic mean value property. They also
established the existence of solutions to using game-theoretic
arguments.



Previous developments

Manfredi, Parviainen and Rossi (2010): The authors characterized
solutions to

ur(x, t) — AQIU(X, t) =0,

in terms of an asymptotic mean value property. They also
established the existence of solutions to using game-theoretic
arguments.

Banerjee and Garofalo (2013): They proved existence of the
solutions to
ur(x, t) — Aglu(x, t) =0,

and uniqueness by using comparison principles.



Previous developments

Parviainen and Ruosteenoja (2016): The authors obtained local

Holder and Lipschitz estimates to
ue(x,t) — Au— (p(x, t) — 2)AN u(x, t) = 0,

By using a game theoretic method for the case p = p(x, t) > 2.
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Previous developments

Parviainen and Ruosteenoja (2016): The authors obtained local
Holder and Lipschitz estimates to

ue(x,t) — Au— (p(x, t) — 2)AN u(x, t) = 0,
By using a game theoretic method for the case p = p(x, t) > 2.

Attouchi and Parviainen (2018): The authors showed that viscosity
solutions of

2 Du+¢& Du+&\
w202 (PG o) =

)

1. The solutions are of class C##/2 with 0 < 8 < 1 and & € RY;

2. Forall t € [-r?,0], if oscg, u(-, t) < A, we obtain that the
oscillation of v in @, is bounded from above by
CA+4r%f L= (qn)- y



Hgeg and Lindqvist (2020): The authors proved that viscosity
solutions of

ue(x, t) — (

t) =
are locally of class W21 when p € (g, %)
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Hgeg and Lindqvist (2020): The authors proved that viscosity
solutions of

ue(x, t) — (

t) =
are locally of class W21 when p € (g, %)

Dong, Peng, Zhang and Zhou (2020): The authors showed that

viscosity solutions of

Ut(X7 t) - AQIU(X7 t) - 07

are of class W21 for g < 2+ 6, ,, with 0, , € (0,1), when
€(1,2)u(23+ 7).

11
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General idea of the method

The strategy is to create a path connecting the studied equation
for a nice limiting equation. Thus, we transport these great

properties to the studied operator through this path
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Approximation methods

Approximation Lemma Let u € C(Q1) be a normalized viscosity
solution to

ut—Au—(p—2)<D2u Du+¢ Du+§>:f in Q1
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Approximation Lemma Let u € C(Q1) be a normalized viscosity
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Approximation methods

Approximation Lemma Let u € C(Q1) be a normalized viscosity
solution to

Du+¢ Du+¢€
|Du + £|” |Du + €|

ut—Au—(p—2)<D2u >:fin Q1,

where £ € RY and f € L%°(Q1) NC(Q1). Given & > 0, there exists
€ > 0 such that, if

Iflloe (@) + 1P =2 <,
then we can find h € C2’1(Q7/9) such that

sup |u(x, t) — h(x, t)| <.
Q7/9

13



Approximation methods

The result follows from two main ingredients:

1. Contradiction argument
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Approximation methods

The result follows from two main ingredients:

1. Contradiction argument;

2. Stability result.

Consequences:

1. The solutions of the normalized p-Laplace are close to the
solutions of the Heat equation.

14



Regularity in Holder Spaces with respect to the spatial variable

Theorem (A. -Santos) Let u € C(Q1) be a normalized viscosity
solution of
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Du+ & Du+€>_f. 0
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ii5)



Regularity in Holder Spaces with respect to the spatial variable
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Regularity in Holder Spaces with respect to the spatial variable

Theorem (A. -Santos) Let u € C(Q1) be a normalized viscosity

solution of
Du+¢ Du+¢ .
—Au—(p—2)(D? =f
w0 (o=2) (DB ) = O

where ¢ € R? and f € L>(Q1) NC(Q1). Then, given a € (0,1),
there exists € > 0 such that

1Flleoe (@) + 1P =2 <,

we can find a constant 0 < p < 1 and a sequence of affine
functions (€,)nen of the form £,(x, t) := a, + by, - x satisfying
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Regularity in Holder Spaces with respect to the spatial variable

Theorem (A. -Santos) Let u € C(Q1) be a normalized viscosity

solution of
Du+¢ Du+¢ .
—Au—(p—2)(D? =f
w0 (o=2) (DB ) = O

where ¢ € R? and f € L>(Q1) NC(Q1). Then, given a € (0,1),
there exists € > 0 such that

[Flloe(@) +1p— 2] <,
we can find a constant 0 < p < 1 and a sequence of affine
functions (€,)nen of the form £,(x, t) := a, + by, - x satisfying
sup |u(x, t) — £n(x, t)| < p"+),

on

ant1 — an| < Cpn(1+a) and |bpy1 — by| < Cp™
+ -+

for a constant C > 0 and for every n € N. 15



Ideas behind the proof and some consequences

The result follows from three main ingredients:

1. Induction argument
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Sketch of the proof

Take § > 0, it follows from the Approximation Lemma that there
exists function h € C*'(Qg/q) such that

sup |U(X, t) - h(X7 t)’ <90

P
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Take § > 0, it follows from the Approximation Lemma that there
exists function h € C*'(Qg/q) such that
sup |u(x, t) — h(x, t)| < 0.
P

Set
{(x, t) := h(0,0) + Dh(0,0) - x.
By using regularity results for h, we have that

SUp‘h(X, t) - E(Xv t)‘ < Cp2a
»

From the triangular inequality, we obtain
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Sketch of the proof

Take § > 0, it follows from the Approximation Lemma that there
exists function h € C*'(Qg/q) such that
sup |u(x, t) — h(x, t)| < 0.
P

Set
{(x, t) := h(0,0) + Dh(0,0) - x.
By using regularity results for h, we have that
sup ‘h(Xv t) - E(Xv t)‘ < Cp2a
P

From the triangular inequality, we obtain

sup |u(x, t) — £(x, t)] <8+ Cp°.
Q

P

Making universal choices, we define

p::(1/2C)ﬁ and §:=plte/2. 17



Sketch of the proof

Assume that the case n = k has been verified
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Sketch of the proof

Assume that the case n = k has been verified. We prove the case
n =k + 1. Define vg : Q1 — RY such that

u(phx, p*t) — li(p*x, p°¥t)
pk(l-‘ra)

vk(x, t) =

Notice that v, solves

Dvi + p~**bi Dvi + p~ by
|Dvi + p=k@by|” [Dvy + p~keby|

(Vk)t—AVk—(p—2) <D2Vk > = frinQx,

where fi == 1 f
k pk(e=1)
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Sketch of the proof

Assume that the case n = k has been verified. We prove the case
n =k + 1. Define vg : Q1 — RY such that

(P, p*Kt) = Li(p*x, p** 1)
pk(l-‘ra)

u
vk(x, t) =

Notice that v, solves
Dvi + p~**bi Dvi + p~ by
|Dvic + p=keby|” [Dvg + p=<by|

(Vk)t—AVk—(p—Q) <D2Vk > = frinQx,

where fi == 1 f.
k pk(e=1)

It follows from the induction hypothesis that v satisfies
Approximation Lemma, that is, there exists he Cz’l(Q7/9), so that

sup |vi(x, t) — h(x, t)| < 4.
Q7/9

18



Sketch of the proof

As a consequence of case n = 1, there exists an affine function ¢
such that

sup |Vk(X7 t) - Z(Xa t)| < p1+a
Qo
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Sketch of the proof

As a consequence of case n = 1, there exists an affine function ¢
such that

sup |vi(x, t) = I(x, )] < p'*.

Qp
Defining £x1(x, t) := L (x, t) + p¥AH+(p=*x, p=2Kt) yields

sup |u(x, t) — lga(x, t)] < plkFDTe)
Q k41
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Sketch of the proof

As a consequence of case n = 1, there exists an affine function ¢
such that

sup |Vk(X7 t) - Z(Xa t)| < p1+a.
Qo

Defining €1 1(x, t) := i (x, t) + pKA+DF(p=Fx, p=2Kt) yields

sup |U(Xa t) o Ek-i—l(xa t)| < p(k—i-l)(l—l—a)‘
Q k41

Also, the coefficients satisfying
k1 — ak| < CpHtF) (1)

and
|kt — bi] < Cp*® (2)
for every k € N.

19



Regularity in Holder Spaces with respect to the time

Theorem (A. -Santos) Let u be a normalized viscosity solution to

Du+ ¢ Du+§>_finQ
Du+ & [Du+€|/ b

ut—Au—(p—2)<D2u
where ¢ € RY and f € L®(Q1) NC(Qy). If
1fleo(@) + 1P = 2| <,
then there exists C > 0 such that for all t € (—r?,0)
u(0,) - u(0,0)] < Cle%",

for all @ € (0,1).

20



Ideas behind the proof and some consequences

The result follows from the two main ingredient:

1. Holder regularity result for the spatial variable
Andrade-Santos)
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Ideas behind the proof and some consequences

The result follows from the two main ingredient:

1. Holder regularity result for the spatial variable
Andrade-Santos);

2. Control the oscillation for a solution of a uniformly parabolic

equation.
Consequences to regularity theory:

1. The solutions with respect the time are of class C*.

21



Sketch of the proof

For (x,t) € Q,, we define
v(x,t) := u(x,t) — u(0,0) — Du(0,0) - x
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Sketch of the proof

For (x,t) € Q,, we define
v(x,t) := u(x,t) — u(0,0) — Du(0,0) - x.
From the Holder regularity result, we have
v(x1,t) = v(xe, t)| < Crite,
for x1,x0 € By, t € [-r?,0]. Then oscg,v(-,t) < Crite.

Notice that v solves
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Orv — Av—(p )< V|Dv—|—b|’Dv+b|> in Q

where b := Du(0,0)
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Sketch of the proof

For (x,t) € Q,, we define
v(x,t) := u(x,t) — u(0,0) — Du(0,0) - x.
From the Holder regularity result, we have
v(x1,t) = v(xe, t)| < Crite,
for x1,x0 € By, t € [-r?,0]. Then oscg,v(-,t) < Crite.
Notice that v solves

Orv — Av —(p—2) <D2v

Dv+b Dv+b _
\Dv + b|’ Dv+b|> =f in @Q,
where b := Du(0,0). Therefore, we can estimate the oscillation of
vin Q by Crit® 4 4r%||f|| 1 (qy)
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Sketch of the proof

For (x,t) € Q,, we define
v(x,t) := u(x,t) — u(0,0) — Du(0,0) - x.
From the Holder regularity result, we have
v(x1,t) = v(xe, t)| < Crite,
for x1,x0 € By, t € [-r?,0]. Then oscg,v(-,t) < Crite.
Notice that v solves

Orv — Av —(p—2) <D2v

Dv+b Dv+b in 0
= | r
|Dv + b|” |Dv + b|

where b := Du(0,0). Therefore, we can estimate the oscillation of
vin Q, by Crite +4r2||f“Loo(Q1).
In particular,

u(0,t) — u(0,0)] = |v(0,t)] < Clt| =" .



Regularity in Sobolev Spaces

Let u € C(Q1) be a viscosity solution to

ur(x, t) — AQ’U(X, t)=0
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Regularity in Sobolev Spaces
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1. The solution v; is a classical solution (in the interior)
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Regularity in Sobolev Spaces

Let u € C(Q1) be a viscosity solution to

ur(x, t) — AQ’U(X, t)=0.

We consider the following regularized problem:

D?v.Dv. - Dy,
(Vs)t_AVE_(P_z)W = 0 on Q3/4

ve. = u on 0Q3.
Notice that

1. The solution v; is a classical solution (in the interior);

2. The gradient of v, is bounded from above with a bound
independent of ¢.

23



Regularity in Sobolev Spaces

Theorem (A. - Santos) Let u € C(Q1) be a viscosity solution to

ug(x, t) — AQ’U(X, t)=0

24



Regularity in Sobolev Spaces

Theorem (A. - Santos) Let u € C(Q1) be a viscosity solution to
N _
ue(x,t) = Aju(x, t) =0,
There exists €1 > 0 such that if

|,D_2| Sgla

then u € W2’1“’(Q1/2) for every 1 < g < oco. In addition, there
exists a universal constant C > 0 such that

lullwasa(ay,,) < Cllullie(ay)-

24



Ideas behind the proof and some consequences

The result follows from two main ingredients:

1. Properties from the regularized equation (K. Does)
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Ideas behind the proof and some consequences

The result follows from two main ingredients:

1. Properties from the regularized equation (K. Does);
2. Regularity estimates for uniformly parabolic equations in
Sobolev spaces (Lihe Wang) .

Consequences to regularity theory:

1. By Sobolev embbeding, we obtain C1'1~ for the homogeneous
case;

2. In our case, the Sobolev estimates implies the stronger version
of the Holder regularity result for f = 0;

3. We obtain higher integrability for the viscosity solutions of the
problem, with the trade off of losing the precise range on the
values of p for which the estimate holds true.

25



Sketch of the proof

Consider the operator

D?uDv, - Dv,

F(D? t) = —Au—(p—2
( u, X, ) u (P ) ‘DV5|2+€2
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Consider the operator

D?uDv, - Dv,

F(D?u,x,t) :== —Au—(p—2 :
( u, X, ) u (P ) ‘DV5|2+€2

1. The operator F is uniformly parabolic with constants
A=min(l,p—1) and A = max(1,p— 1)
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2. The oscillation of F is such that
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Sketch of the proof

Consider the operator

D?uDv, - Dv,

F(D?u,x,t) :== —Au—(p—2 :
( u, X, ) u (P ) ‘DV5|2+€2

1. The operator F is uniformly parabolic with constants
A=min(l,p—1) and A = max(1,p — 1);
2. The oscillation of F is such that

0 (x, £) < 2|p — 2|

3. The function v, solves
(v.): + F(D?v., x,t) = 0.
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Hence, there exists g¢ such that if

lIp—2| <o
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Hence, there exists g¢ such that if
lp — 2| < eo,
we obtain that v, € W271;q(Ql/2), for all g > 1 with estimate
[vellware < C.
Hence,

1. There exists v, such that v. — v, uniformly in compact sets;

2. By stability result, we obtain that v, solves the homogeneous
normalized p-Laplace equation;

3. It follows from the uniqueness that v, = u;

4. Therefore u € W19(Qy ) with estimate.
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Muito obrigada
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