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Motivation



Motivation

For 1 < p <∞, we consider the p-Laplace equation

∆pu := div(|Du|p−2Du) = 0

,

is the Euler-Lagrange equation associated to the functional

1

p

∫
|Du|p.

In this case, we pointed out well-known properties:

1. The equation is in divergence form;

2. The variational structure of the equation;

3. Every weak solution of p-Laplace equation in the distribution

sense is C1,α for some α > 0.
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Motivation

We study regularity theory for the viscosity solutions to

ut(x , t)−∆N
p u(x , t) = f (x , t) in Q1,

where

1. The normalized p-Laplace operator is defined by

∆N
p u := |Du|2−p∆pu

= ∆u + (p − 2)∆∞u

= ∆u + (p − 2)
〈
D2u Du

|Du| ,
Du
|Du|

〉
;

2. The right-hand side f is a continuous and bounded function in

Q1 and 1 < p <∞.
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Motivation

Some remarks:

1. The equation above can be seen as a uniformly parabolic

model in nondivergence form, with constants min{(p − 1, 1)}
and max{(p − 1), 1}

;

2. This model has a singularity on the set {Du = 0}, which

implies that classical C1+α-regularity can not be applied

directly.

4



Motivation

Some remarks:

1. The equation above can be seen as a uniformly parabolic

model in nondivergence form, with constants min{(p − 1, 1)}
and max{(p − 1), 1};

2. This model has a singularity on the set {Du = 0}, which

implies that classical C1+α-regularity can not be applied

directly.

4



Motivation

The normalized p-Laplace equation appears in many branches of

mathematics.

• For p → 1,

ut(x , t)−∆N
1 u(x , t) = 0

is the level set formulation of the mean curvature flow.

• For 1 < p <∞,

ut(x , t)−∆N
p u(x , t) = f (x , t)

This equation arises from tug-of-war stochastic games with noise.

• For p →∞,

ut(x , t)−∆N
∞u(x , t) = 0

This equation finds an application in image processing.
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Viscosity solutions

Let 1 < p <∞ and f is a continuous function in Q1. We say that

u ∈ C(Q1) is a viscosity subsolution to

ut(x , t)−∆N
p u(x , t) = f (x , t)

if, for every (x0, t0) ∈ Q1 and ϕ ∈ C2(Q1) such that u − ϕ has a

local maximum at (x0, t0), we have

ϕt(x0, t0)−∆N
p ϕ(x0, t0) ≤ f (x0, t0), if Dϕ(x0, t0) 6= 0

ϕt(x0, t0)−∆ϕ(x0, t0)− (p − 2)λmax(D2ϕ(x0, t0))

≤ f (x0, t0), if Dϕ(x0, t0) = 0 and p ≥ 2.

ϕt(x0, t0)−∆ϕ(x0, t0)− (p − 2)λmin(D2ϕ(x0, t0))

≤ f (x0, t0), if Dϕ(x0, t0) = 0 and 1 < p < 2.
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Viscosity solution

Conversely, we say that u ∈ C(Q1) is a viscosity supersolution to

ut(x , t)−∆N
p u(x , t) = f (x , t)

if, (x0, t0) ∈ Q1 and ϕ ∈ C2(Q1) such that u − ϕ has a local

minimum at (x0, t0), we have

ϕt(x0, t0)−∆N
p ϕ(x0, t0) ≥ f (x0, t0), if Dϕ(x0, t0) 6= 0

ϕt(x0, t0)−∆ϕ(x0, t0)− (p − 2)λmin(D2ϕ(x0, t0))

≥ f (x0, t0), if Dϕ(x0, t0) = 0 and p ≥ 2.

ϕt(x0, t0)−∆ϕ(x0, t0)− (p − 2)λmax(D2ϕ(x0, t0))

≥ f (x0, t0), if Dϕ(x0, t0) = 0 and 1 < p < 2.

We call u is a viscosity solution, when it is subsolution and

supersolution.
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Viscosity Solutions
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Previous developments

Manfredi, Parviainen and Rossi (2010): The authors characterized

solutions to

ut(x , t)−∆N
p u(x , t) = 0,

in terms of an asymptotic mean value property. They also

established the existence of solutions to using game-theoretic

arguments.

Banerjee and Garofalo (2013): They proved existence of the

solutions to

ut(x , t)−∆N
p u(x , t) = 0,

and uniqueness by using comparison principles.
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Previous developments

Parviainen and Ruosteenoja (2016): The authors obtained local

Hölder and Lipschitz estimates to

ut(x , t)−∆u − (p(x , t)− 2)∆N
∞u(x , t) = 0,

By using a game theoretic method for the case p = p(x , t) > 2.

Attouchi and Parviainen (2018): The authors showed that viscosity

solutions of

ut −∆u − (p − 2)

〈
D2u

Du + ξ

|Du + ξ|
,
Du + ξ

|Du + ξ|

〉
= f ,

1. The solutions are of class Cβ,β/2 with 0 < β < 1 and ξ ∈ Rd ;

2. For all t ∈ [−r2, 0], if oscBru(·, t) ≤ A, we obtain that the

oscillation of u in Qr is bounded from above by

CA + 4r2‖f ‖L∞(Q1).
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Høeg and Lindqvist (2020): The authors proved that viscosity

solutions of

ut(x , t)−∆N
p u(x , t) = 0,

are locally of class W 2,1;2 when p ∈ ( 6
5 ,

14
5 )

.

Dong, Peng, Zhang and Zhou (2020): The authors showed that

viscosity solutions of

ut(x , t)−∆N
p u(x , t) = 0,

are of class W 2,1;q for q < 2 + δn,p with δn,p ∈ (0, 1), when

p ∈ (1, 2) ∪
(

2, 3 + 2
d−2

)
.
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Approximation methods



Approximation methods

General idea of the method

The strategy is to create a path connecting the studied equation

for a nice limiting equation. Thus, we transport these great

properties to the studied operator through this path

.
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Improved regularity in Hölder spaces



Approximation methods

Approximation Lemma Let u ∈ C(Q1) be a normalized viscosity

solution to

ut −∆u − (p − 2)

〈
D2u

Du + ξ

|Du + ξ|
,
Du + ξ

|Du + ξ|

〉
= f in Q1

,

where ξ ∈ Rd and f ∈ L∞(Q1) ∩ C(Q1). Given δ > 0, there exists

ε > 0 such that, if

‖f ‖L∞(Q1) + |p − 2| < ε,

then we can find h ∈ C2,1(Q7/9) such that

sup
Q7/9

|u(x , t)− h(x , t)| < δ.
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Approximation methods

The result follows from two main ingredients:

1. Contradiction argument

;

2. Stability result.

Consequences:

1. The solutions of the normalized p-Laplace are close to the

solutions of the Heat equation.
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Regularity in Hölder Spaces with respect to the spatial variable

Theorem (A. -Santos) Let u ∈ C(Q1) be a normalized viscosity

solution of

ut −∆u − (p − 2)

〈
D2u

Du + ξ

|Du + ξ|
,
Du + ξ

|Du + ξ|

〉
= f in Q1

,

where ξ ∈ Rd and f ∈ L∞(Q1) ∩ C(Q1). Then, given α ∈ (0, 1),

there exists ε > 0 such that

‖f ‖L∞(Q1) + |p − 2| ≤ ε,

we can find a constant 0 < ρ < 1 and a sequence of affine

functions (`n)n∈N of the form `n(x , t) := an + bn · x satisfying

sup
Qρn
|u(x , t)− `n(x , t)| ≤ ρn(1+α),

|an+1 − an| ≤ Cρn(1+α) and |bn+1 − bn| ≤ Cρnα

for a constant C > 0 and for every n ∈ N.
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Ideas behind the proof and some consequences

The result follows from three main ingredients:

1. Induction argument

;

2. Approximation Lemma;

3. Iteration process.

Consequences to regularity theory:

1. The gradient is almost Lipschitz continuous by geometric

methods;
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Sketch of the proof

Take δ > 0, it follows from the Approximation Lemma that there

exists function h ∈ C2,1(Q8/9) such that

sup
Qρ

|u(x , t)− h(x , t)| ≤ δ

.

Set

`(x , t) := h(0, 0) + Dh(0, 0) · x .

By using regularity results for h, we have that

sup
Qρ

|h(x , t)− `(x , t)| ≤ Cρ2,

From the triangular inequality, we obtain

sup
Qρ

|u(x , t)− `(x , t)| ≤ δ + Cρ2.

Making universal choices, we define

ρ := (1/2C )
1

1−α and δ := ρ1+α/2.

17
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Sketch of the proof

Assume that the case n = k has been verified

. We prove the case

n = k + 1. Define vk : Q1 → Rd such that

vk(x , t) :=
u(ρkx , ρ2kt)− `k(ρkx , ρ2kt)

ρk(1+α)
.

Notice that vk solves

(vk)t−∆vk−(p−2)

〈
D2vk

Dvk + ρ−kαbk
|Dvk + ρ−kαbk |

,
Dvk + ρ−kαbk
|Dvk + ρ−kαbk |

〉
= fk inQ1,

where fk := 1
ρk(α−1) f .

It follows from the induction hypothesis that vk satisfies

Approximation Lemma, that is, there exists h̃ ∈ C2,1(Q7/9), so that

sup
Q7/9

|vk(x , t)− h̃(x , t)| < δ.

18
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Approximation Lemma, that is, there exists h̃ ∈ C2,1(Q7/9), so that
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Sketch of the proof

As a consequence of case n = 1, there exists an affine function ˜̀

such that

sup
Qρ

|vk(x , t)− ˜̀(x , t)| ≤ ρ1+α

.

Defining `k+1(x , t) := `k(x , t) + ρk(1+α) ˜̀(ρ−kx , ρ−2kt) yields

sup
Q
ρk+1

|u(x , t)− `k+1(x , t)| ≤ ρ(k+1)(1+α).

Also, the coefficients satisfying

|ak+1 − ak | ≤ Cρk(1+α) (1)

and

|bk+1 − bk | ≤ Cρkα (2)

for every k ∈ N.
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Regularity in Hölder Spaces with respect to the time

Theorem (A. -Santos) Let u be a normalized viscosity solution to

ut −∆u − (p − 2)

〈
D2u

Du + ξ

|Du + ξ|
,
Du + ξ

|Du + ξ|

〉
= f in Q1,

where ξ ∈ Rd and f ∈ L∞(Q1) ∩ C(Q1). If

‖f ‖L∞(Q1) + |p − 2| < ε,

then there exists C > 0 such that for all t ∈ (−r2, 0)

|u(0, t)− u(0, 0)| ≤ C |t|
1+α

2 ,

for all α ∈ (0, 1).
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Ideas behind the proof and some consequences

The result follows from the two main ingredient:

1. Hölder regularity result for the spatial variable

Andrade-Santos)

;

2. Control the oscillation for a solution of a uniformly parabolic

equation.

Consequences to regularity theory:

1. The solutions with respect the time are of class Cα.
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Sketch of the proof

For (x , t) ∈ Qr , we define

v(x , t) := u(x , t)− u(0, 0)− Du(0, 0) · x

.

From the Hölder regularity result, we have

|v(x1, t)− v(x2, t)| ≤ Cr1+α,

for x1, x2 ∈ Br , t ∈ [−r2, 0]. Then oscBr v(·, t) ≤ Cr1+α.

Notice that v solves

∂tv −∆v − (p − 2)

〈
D2v

Dv + b

|Dv + b|
,
Dv + b

|Dv + b|

〉
= f in Qr ,

where b := Du(0, 0). Therefore, we can estimate the oscillation of

v in Qr by Cr1+α + 4r2‖f ‖L∞(Q1).

In particular,

|u(0, t)− u(0, 0)| = |v(0, t)| ≤ C |t|
1+α

2 .
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Regularity in Sobolev Spaces

Let u ∈ C(Q1) be a viscosity solution to

ut(x , t)−∆N
p u(x , t) = 0

.

We consider the following regularized problem:
(vε)t −∆vε − (p − 2)

D2vεDvε · Dvε
|Dvε|2 + ε2

= 0 on Q3/4

vε = u on ∂Q3/4.

Notice that

1. The solution vε is a classical solution (in the interior);

2. The gradient of vε is bounded from above with a bound

independent of ε.
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Regularity in Sobolev Spaces

Theorem (A. - Santos) Let u ∈ C(Q1) be a viscosity solution to

ut(x , t)−∆N
p u(x , t) = 0

,

There exists ε1 > 0 such that if

|p − 2| ≤ ε1,

then u ∈W 2,1;q(Q1/2) for every 1 < q <∞. In addition, there

exists a universal constant C > 0 such that

‖u‖W 2,1;q(Q1/2) ≤ C‖u‖L∞(Q1).
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Ideas behind the proof and some consequences

The result follows from two main ingredients:

1. Properties from the regularized equation (K. Does)

;

2. Regularity estimates for uniformly parabolic equations in

Sobolev spaces (Lihe Wang) .

Consequences to regularity theory:

1. By Sobolev embbeding, we obtain C1,1− for the homogeneous

case;

2. In our case, the Sobolev estimates implies the stronger version

of the Hölder regularity result for f = 0;

3. We obtain higher integrability for the viscosity solutions of the

problem, with the trade off of losing the precise range on the

values of p for which the estimate holds true.
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Sketch of the proof

Consider the operator

F (D2u, x , t) := −∆u − (p − 2)
D2uDvε · Dvε
|Dvε|2 + ε2

.

1. The operator F is uniformly parabolic with constants

λ = min(1, p − 1) and Λ = max(1, p − 1);

2. The oscillation of F is such that

θF (x , t) ≤ 2|p − 2|;

3. The function vε solves

(vε)t + F (D2vε, x , t) = 0.
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Hence, there exists ε0 such that if

|p − 2| ≤ ε0

,

we obtain that vε ∈W 2,1;q(Q1/2), for all q ≥ 1 with estimate

‖vε‖W 2,1;q ≤ C .

Hence,

1. There exists v∞ such that vε → v∞ uniformly in compact sets;

2. By stability result, we obtain that v∞ solves the homogeneous

normalized p-Laplace equation;

3. It follows from the uniqueness that v∞ = u;

4. Therefore u ∈W 2,1;q(Q1/2) with estimate.
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