On the singular Q-curvature problem

Rayssa Caju UFPB

PDE Seminar - IMECC/UNICAMP

November 25, 2021

The author was partially supported by FAPESq

Joint work with

João Henrique Andrade

João Marcos do Ó

Almir Silva Santos

Jesse Ratzkin

Conformal geometry and PDE's

• Let (M, g) be a Riemannian manifold. We say that a metric \tilde{g} is conformal to g when there exists a positive function ρ , such that

$$ilde{g} =
ho g$$
. (angle preserving)

Conformal geometry

Study of quantities or operators that are conformally invariant.

Conformal geometry and PDE's

• Let (M, g) be a Riemannian manifold. We say that a metric \tilde{g} is conformal to g when there exists a positive function ρ , such that

$$ilde{g} =
ho g$$
. (angle preserving)

Conformal geometry

Study of quantities or operators that are conformally invariant.

• This connection between conformal geometry and PDE's was explored by H.Yamabe in 1960;

Overview

- 1 The Yamabe problem
- ${\bf 2}$ The ${\it Q}$ -curvature problem
- Singular setting
- Strategy
- 6 Interior analysis
- 6 Exterior analysis

The Yamabe problem

• In 1960, H. Yamabe proposed the following problem:

Yamabe problem

Given a compact Riemannian manifold (M, g), find a conformal metric \tilde{g} to g with constant scalar curvature.

• If we write $\tilde{g} = u^{\frac{4}{n-2}}g$ $(n \ge 3)$, this problem is equivalent to find a positive solution of the following PDE:

$$\Delta_g u - \frac{n-2}{4(n-1)} R_g u + \frac{n(n-2)}{4} u^{\frac{n+2}{n-2}} = 0$$
 in M

• $L_g := \Delta_g - \frac{n-2}{4(n-1)} R_g$ is called *conformal laplacian*, and it satisfies the property

$$\tilde{g} = u^{\frac{4}{n-2}}g \Rightarrow L_{\tilde{g}}(v) = u^{-\frac{n+2}{n-2}}L_{g}(uv)$$

Some problems in conformal geometry \Leftrightarrow PDE with critical exponent

- Solved by Yamabe '60, Trudinger '68, Aubin '76 and Schoen '84;
- One of the first PDE with critical exponent to be fully solved;

The Paneitz operator

- In 1983 S. Paneitz discovered a fourth-order operator that we denote by P_g , which has a conformal structure (T. Branson in 1985);
- If $\tilde{g} = u^{\frac{4}{n-4}}g$, then we have the following transformation rule

$$P_{\widetilde{g}}(v)=u^{-\frac{n+4}{n-4}}P_{g}(uv).$$

This operator is related to a "new" geometric quantity called Q-curvature;

Q-curvature (Some Geometric aspects)

In dimension 4, as an application of the Chern-Gauss-Bonnet Theorem we can verify that

$$4\pi^2\chi(M)=rac{1}{8}\int_M|W_g|^2d\mu+\int_MQ_gd\mu$$

- Analogy between the quantity Q_g of a four-manifold and the Gauss curvature of a surface;
 - S.-Y. Alice Chang, M. Eastwood, B. Ørsted and P. C. Yang: What is Q-curvature?

Q-curvature problem

Given a (M, g) compact Riemannian manifold, there exists a metric \tilde{g} which is conformal to g with constant Q-curvature?

- Case n = 4:
 - Chang-Yang '95 (Annals), Djadli-Malchiodi'08 (Annals) and Li-Li-Liu'12 (Adv. Math.);
- If $n \ge 5$ and $\tilde{g} = u^{\frac{4}{n-4}}g$, then the problem is equivalent to find a positive solution to the following PDE

$$P_g u = \frac{n(n-4)(n^2-4)}{16} u^{\frac{n+4}{n-4}}$$
 on M (1)

Let's focus on the case n > 5;

The Paneitz operator is

$$P_g = \Delta_g^2 + \operatorname{div}\left(rac{4}{n-2}\operatorname{Ric}_g - rac{(n-2)^2 + 4}{2(n-1)(n-2)}R_gg
ight)\operatorname{d} + rac{n-4}{2}Q_g.$$

and the Q-curvature is given by

$$Q_g = -\frac{1}{2(n-1)}\Delta_g R_g + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2}R_g^2 - \frac{2}{(n-2)^2}|\operatorname{Ric}_g|^2,$$

The Paneitz operator is

$$P_g = \Delta_g^2 + \operatorname{div}\left(rac{4}{n-2}\operatorname{Ric}_g - rac{(n-2)^2 + 4}{2(n-1)(n-2)}R_gg
ight)\operatorname{d} + rac{n-4}{2}Q_g.$$

and the Q-curvature is given by

$$Q_{\mathbf{g}} = -\frac{1}{2(n-1)} \Delta_{\mathbf{g}} R_{\mathbf{g}} + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} R_{\mathbf{g}}^2 - \frac{2}{(n-2)^2} |\operatorname{Ric}_{\mathbf{g}}|^2,$$

What are the main difficulties?

- Variational problem, but ...
- Lack of maximum principle!
 - Several new insights thanks to the works of Qing-Raske' 06 IMRN, Gursky- Malchiodi '15 JEMS and Hang-Yang'16 CPAM;

What happens in the noncompact case?

• What happens if the domain is noncompact? Ex: $M \setminus X$, $X \subset M$ is a nonempty set.

Problem

Given a compact manifold (M, g), find a conformal metric \tilde{g} which is complete in $M \setminus X$ with constant scalar (Q-curvature) curvature .

• Singular Yamabe problem (SYP) and Singular Q-curvature problem;

In the case of the SYP for n > 3, if u is a positive solution of

$$\begin{cases} \Delta_g u - \frac{n-2}{4(n-1)} R_g u + \frac{n(n-2)}{4} u^{\frac{n+2}{n-2}} = 0 & \text{in} \quad M \backslash X \\ u(x) \to \infty & \text{as} \quad x \to X \end{cases}$$

then the metric $\tilde{g} = u^{\frac{4}{n-2}}g$ is complete and has constant positive scalar curvature.

In the case of the SYP for n > 3, if u is a positive solution of

$$\left\{ \begin{array}{ll} \Delta_g \, u - \frac{n-2}{4(n-1)} R_g \, u + \frac{n(n-2)}{4} u^{\frac{n+2}{n-2}} = 0 & \text{in} \quad M \backslash X \\ u(x) \to \infty & \text{as} \quad x \to X \end{array} \right.$$

then the metric $\tilde{g} = u^{\frac{4}{n-2}}g$ is complete and has constant positive scalar curvature.

Existence of solutions is directly related with the size of the singular set X and the sign of the scalar curvature!

- Aviles and McOwen' 88: If X is a k-submanifold, then a solution for SYP with $R_g < 0$ exists iff, k > (n-2)/2.
- If a solution with $R_g \ge 0$ exists then dim $X \le (n-2)/2$;

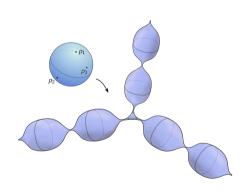
Existence results: Case $R_g \geq 0$

- Mazzeo, Pacard '96 JDG:
 - X closed submanifold of M, $0 < dim X \le (n-2)/2$;

What if
$$X = \{p_1, ..., p_k\}$$
? $(R_g = n(n-1))$;

- Mazzeo, Pacard '99 Duke, R. Schoen '88 CPAM:
 - $M = \mathbb{S}^n$, X has at least two points;
- Byde '05 Indiana:
 - M is conformally flat and g is nondegenerate;
- A.Silva Santos '09 Ann. Henri Poincaré;
 - g is nondegenerate and Weyl tensor vanishes at the singular points;

Interesting facts...



- Analogy between Constant Scalar curvature metrics and CMCs surfaces;
- Different types of problems: extrinsic and intrisic;

Singular Q-curvature problem

Theorem (Hyder-Sire '20 JFA)

Let X be a connected closed submanifold of M. Assume that $\mathbf{Q}_g \geq \mathbf{0}$, $Q_g \not\equiv 0$ and $\mathbf{R}_g \geq \mathbf{0}$. If $0 < dim(X) \leq (n-4)/2$, then there exists an infinite dimensional family of complete metrics on $M \setminus X$ with constant Q-curvature.

Singular Q-curvature problem

Theorem (Hyder-Sire '20 JFA)

Let X be a connected closed submanifold of M. Assume that $\mathbf{Q}_g \geq \mathbf{0}$, $Q_g \not\equiv 0$ and $\mathbf{R}_g \geq \mathbf{0}$. If $0 < dim(X) \leq (n-4)/2$, then there exists an infinite dimensional family of complete metrics on $M \setminus X$ with constant Q-curvature.

What happens when the singular set $X = \{p_1, ..., p_k\}$?

Main result

• Suppose $X = \{p\}$;

Theorem

Let (M^n,g) be a closed Riemannian manifold. Assume that $Q_g=n(n^2-4)/8$ and that g satisfies (H1) and (H2). Then, there exist a constant $\varepsilon_0>0$ and a one-parameter family of metrics $\{g_{\varepsilon}\}_{{\varepsilon}\in(0,\varepsilon_0)}$, conformal to g in $M\setminus\{p\}$ with constant Q-curvature.

General Idea: PDE viewpoint

If we write

$$u = u_0 + v$$

where u_0 is a good approximation for the solution, we have

$$0 = H_g(u_0 + v) = H_g(u_0) + L_g^{u_0}(v) + Q_0(v) \Rightarrow$$

$$L_g^{u_0}(v) = -H_g(u_0) - Q_0(v)$$

General Idea: PDE viewpoint

If we write

$$u = u_0 + v$$

where u_0 is a good approximation for the solution, we have

$$0 = H_g(u_0 + v) = H_g(u_0) + L_g^{u_0}(v) + Q_0(v) \Rightarrow$$

$$L_g^{u_0}(v) = -H_g(u_0) - Q_0(v)$$

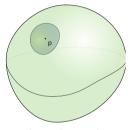
If the linearized operator has a right inverse G_g^0 , then find a solution of the problem is equivalent to find a fixed point of the operator

$$N(v) = G_g^0(-H_g(u_0) - Q_0(v)).$$

Q-curvature case

Gluing method:

- 1. Interior analysis (near the singularity)
- 2. Exterior analysis
- 3. Gluing



 The asymptotic analysis by J. Ratzkin '20 indicates that the Delaunay solutions are good approximations near the singularity;

Local models: Delaunay solutions

Consider the positive solutions u > 0 of the fourth-order problem

$$\Delta^{2} u = \frac{n(n-4)(n^{2}-4)}{16} u^{\frac{n+4}{n-4}} \quad \text{in} \quad \mathbb{R}^{n} \setminus \{0\}$$
 (D)

which are singular at the origin.

- C-S. Lin '98 CMH: Positive solutions of (D) are radially symmetric.
- R.L. Frank and T. König '20 classified all the solutions of (D);

Theorem (Frank, König '20 APDE)

If the origin is a nonremovable singularity. Then there exists $\epsilon \in (0, \epsilon_0)$ and $T \in (0, T_\epsilon)$, such that

$$u_{\varepsilon,T}(x) = |x|^{\frac{4-n}{2}} v_{\varepsilon}(-\ln|x| + T).$$

The solutions of (D) are called Delaunay solutions.

Theorem (Frank, König '20 APDE)

If the origin is a nonremovable singularity. Then there exists $\epsilon \in (0, \epsilon_0)$ and $T \in (0, T_\epsilon)$, such that

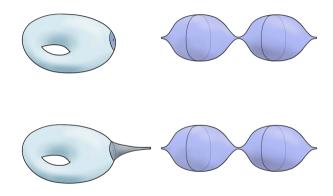
$$u_{\varepsilon,T}(x) = |x|^{\frac{4-n}{2}} v_{\varepsilon}(-\ln|x| + T).$$

The solutions of (D) are called Delaunay solutions.

• Even in fourth-order, this solutions are depending on two-parameters: $\boldsymbol{\varepsilon}$ (necksize), and \boldsymbol{T} (period);

General idea: Geometric viewpoint

General idea: Geometric viewpoint



• Constant function 1 + Green function with pole at *p*;

Interior analysis

Let $a \in \mathbb{R}^n$ and $R \in \mathbb{R}$. Consider the modified Delaunay solutions $u_{\varepsilon,R,a}$.

Consider the operator

$$H_g(u) = P_g u - \frac{n(n-4)(n^2-4)}{16} u^{\frac{n+4}{n-4}}$$

We will seek solutions of the type $u_{\varepsilon,R,a} + v > 0$ such that

$$\left\{ egin{array}{ll} H_g(u_{arepsilon,R,a}+v)=0 & ext{in} & B_r(p)ackslash\{p\} \ (u_{arepsilon,R,a}+v)(x) o\infty & ext{as} & x o p \end{array}
ight.$$

Expanding this equation, we obtain

$$H_{\sigma}(u_{\epsilon R,a} + v) = H_{\sigma}(u_{\epsilon R,a}) + L_{\sigma}^{u_{\epsilon,R,a}}(v) + Q_{\epsilon R,a} = 0$$

which is equivalent to solve

$$L_{\delta}^{u_{\varepsilon,R,a}}v = -H_g(u_{\varepsilon,R,a}) - L_g^{u_{\varepsilon,R,a}}(v) + L_{\delta}^{u_{\varepsilon,R,a}}(v) - Q_{\varepsilon,R,a}$$

Understand the linearized operator, denoted by $L_{\varepsilon,R,a}:=L_{\delta}^{u_{\varepsilon,R,a}}$. Is there any "good space" in which this operator admits a right inverse?

Expanding this equation, we obtain

$$H_g(u_{\varepsilon,R,a}+v)=H_g(u_{\varepsilon,R,a})+L_g^{u_{\varepsilon,R,a}}(v)+Q_{\varepsilon,R,a}=0$$

which is equivalent to solve

$$L_{\delta}^{u_{\varepsilon,R,a}}v = -H_g(u_{\varepsilon,R,a}) - L_g^{u_{\varepsilon,R,a}}(v) + L_{\delta}^{u_{\varepsilon,R,a}}(v) - Q_{\varepsilon,R,a}$$

Understand the linearized operator, denoted by $L_{\varepsilon,R,a}:=L_{\delta}^{u_{\varepsilon,R,a}}$. Is there any "good space" in which this operator admits a right inverse?

Weighted Hölder spaces;

Linearized operator

Proposition

Let R>0, $\alpha\in(0,1)$ and $\mu\in(1,2)$. Then there exists $\varepsilon_0>0$ such that, for all $\varepsilon\in(0,\varepsilon_0)$, $a\in\mathbb{R}^n$ and 0< r<1 with $|a|r\leq r_0$ for some $r_0\in(0,1)$, there is an operator

$$G_{\varepsilon,R,a,r}:C^{0,\alpha}_{\mu-4}(B_r(0)\setminus\{0\})\to C^{4,\alpha}_{\mu}(B_r(0)\setminus\{0\})$$

with the norm bounded independently of ε , R, a and r, which is the right inverse of $L_{\varepsilon,R,a}$.

- This operator prescribes the Navier condition on the boundary: (high eingemodes);
 - $\lambda_0, \lambda_1, \ldots, \lambda_n, \lambda_{n+1}, \ldots$, eingenvalues of $\Delta_{\mathbb{S}^n}$;

Model operator

How can we add a term that "controls" what happens on the boundary?

Model operator

How can we add a term that "controls" what happens on the boundary?

Proposition

Let $0<\alpha<1$. There exists a bounded linear operator $\mathcal{P}_r:\pi_r''(C^{4,\alpha}(\mathbb{S}_r^{n-1}))\times C^{4,\alpha}(\mathbb{S}_r^{n-1})\to C_2^{4,\alpha}(B_r(0)\setminus\{0\})$, such that for all $(\phi_0,\phi_2)\in C^{4,\alpha}(\mathbb{S}^{n-1},\mathbb{R}^2)$, it holds

$$\begin{cases} \Delta^2 \mathcal{P}_r(\phi_0, \phi_2) &= 0 & \text{in } B_r(0) \setminus \{0\} \\ \Delta \mathcal{P}_r(\phi_0, \phi_2) &= r^{-2} \phi_2 & \text{on } \partial B_r \\ \pi''(\mathcal{P}_r(\phi_0, \phi_2)) &= \phi_0 & \text{on } \partial B_r. \end{cases}$$

Interior analysis

Finaly, we will try to solve

$$H_g(u_{\varepsilon,R,a}+v_{\phi_0,\phi_2}+v)=0$$

which is equivalent to

$$L_{\varepsilon,R,a}(v)$$
 = the rest of the expansion.

We need to show that the RHS belongs to the domain of the right inverse.

- For dimensions $5 \le n \le 7$ that it is true!
- For $n \ge 8$, we need to assume that

$$abla^I W_g(p) = 0$$
, for $I = 0, 1, \dots, \left\lceil \frac{n-8}{2} \right\rceil$. (H1)

- Related with the Weyl vanishing conjecture;
- (H1) implies that the metric has a good decay; (Some technical difficulties are overcome by the construction of an auxiliary function)

What about the exterior domain?

Exterior analysis

- 1 is an approx. solution + Green function $G_p(x) \approx |x|^{4-n}$ of the linearized;
- We assume that

g is nondegenerate (H2)

Exterior analysis

- 1 is an approx. solution + Green function $G_p(x) \approx |x|^{4-n}$ of the linearized;
- We assume that

$$g$$
 is nondegenerate

(H2)

- Green function G_p exists;
- Linearized operator is invertible;

Therefore,

$$H_g(1+\lambda G_p+v)=0$$
 in $Mackslash B_r(p)$

which is equivalent to

 $L_g^1(v) = -Q^1(\lambda G_p + v)$

Therefore,

$$H_g(1 + \lambda G_p + v) = 0$$
 in $M \setminus B_r(p)$

which is equivalent to

$$L_g^1(v) = -Q^1(\lambda G_p + v)$$

What about the boundary?

Exterior Poisson operator

Proposition

Let $0<\alpha<1$. There exists a bounded linear operator $\mathcal{Q}_r:C^{4,\alpha}(\mathbb{S}^{n-1}_r,\mathbb{R}^2)\to C^{4,\alpha}_{4-n}(\mathbb{R}^n\backslash B_r)$ such that for all $(\psi_0,\psi_2)\in C^{4,\alpha}(\mathbb{S}^{n-1}_r,\mathbb{R}^2)$, it holds

$$\begin{cases}
\Delta^{2}Q_{r}(\psi_{0}, \psi_{2}) = 0 & \text{in } \mathbb{R}^{n} \backslash B_{r} \\
\Delta Q_{r}(\psi_{0}, \psi_{2}) = r^{-2}\psi_{2} & \text{on } \partial B_{r} \\
Q_{r}(\psi_{0}, \psi_{2}) = \psi_{0} & \text{on } \partial B_{r}.
\end{cases} (2)$$

Gluing Procedure

Interior solution	Exterior solution
$u_{\varepsilon}:=u_{\varepsilon}(a,R,\varphi_0,\varphi_2)$	$ u_{arepsilon} := u_{arepsilon}(\lambda, \psi_0, \psi_2)$

To prove that the solutions will "glue", we need to show that

$$\begin{cases}
 u_{\varepsilon} = v_{\varepsilon} \\
 \partial_{r} u_{\varepsilon} = \partial_{r} v_{\varepsilon} \\
 \Delta_{g} u_{\varepsilon} = \Delta_{g} v_{\varepsilon} \\
 \partial_{r} \Delta_{g} u_{\varepsilon} = \partial_{r} \Delta_{g} v_{\varepsilon}
\end{cases} \tag{G}$$

- To show the existence of parameters satisfying (G), we use fixed points arguments again;
- Spectral decomposition: low and high eigenmodes;

Theorem (Main result):

Let (M^n,g) be a closed Riemannian manifold, $n\geq 5$. Assume that $Q_g=n(n^2-4)/8$ and

(H1) The Weyl tensor vanishes at p, up to order [(n-8)/2] $(n \ge 8)$; (H2) g is nondegenerate; Then, there exist a constant $\varepsilon_0 > 0$ and a one-parameter family of metrics $\frac{1}{2}$

Then, there exist a constant $\varepsilon_0>0$ and a one-parameter family of metrics $\{g_\varepsilon\}$, conformal to g in $M\setminus\{p\}$ with constant Q-curvature. Moreover, each g_ε is asymptotically Delaunay and $g_\varepsilon\to g$ uniformly on compact sets as $\varepsilon\to 0$.

Thank you!

Modified Delaunay solutions

$$u_{\varepsilon,R,a}(x) = |x-a|x|^2 \left| \frac{4-n}{2} v_{\varepsilon} \left(-\log|x| + \log\left| \frac{x}{|x|} - a|x| \right| + \log R \right).$$

Definition

A metric g is **nondegenerate** if the linearized operator $L_g: C^{4,\alpha}(M) \to C^{0,\alpha}(M)$ is surjective for some $\alpha \in (0,1)$, where

$$L_g(u) = P_g u - \frac{n(n^2 - 4)(n + 4)}{16} u.$$