On the singular Q-curvature problem

Rayssa Caju
UFPB

PDE Seminar - IMECC/UNICAMP
November 25, 2021

The author was partially supported by FAPESq



Joint work with

- = v
Jo3o Henrique Jodo Marcos do O

Andrade Jesse Ratzkin

;
/. 5
v

o7

Almir Silva Santos



Conformal geometry and PDE's

® Let (M, g) be a Riemannian manifold. We say that a metric g is conformal to g
when there exists a positive function p, such that

g =pg. (angle preserving)

Conformal geometry

Study of quantities or operators that are conformally invariant.



Conformal geometry and PDE's

® Let (M, g) be a Riemannian manifold. We say that a metric g is conformal to g
when there exists a positive function p, such that

g =pg. (angle preserving)

Conformal geometry

Study of quantities or operators that are conformally invariant.

® This connection between conformal geometry and PDE's was explored by
H.Yamabe in 1960;



@ The Yamabe problem

® The Q-curvature problem
© Singular setting

O Strategy

@ Interior analysis

@ Exterior analysis



The Yamabe problem

® |n 1960, H. Yamabe proposed the following problem:

Yamabe problem

Given a compact Riemannian manifold (M, g), find a conformal metric § to g with
constant scalar curvature.

4
o If we write @ = un—2g (n > 3), this problem is equivalent to find a positive solution
of the following PDE:

n—2 n(n—2) n

Ay— _—%
TP

=0 in M



° lgi=Ng — M’L;EI)Rg is called conformal laplacian, and it satisfies the property

~ _4 _ n+2
g=urrg=Lg(v)=u 2Lg(uv)
Some problems in conformal geometry < PDE with critical exponent

® Solved by Yamabe '60, Trudinger '68, Aubin '76 and Schoen '84;
® One of the first PDE with critical exponent to be fully solved;



The Paneitz operator

® In 1983 S. Paneitz discovered a fourth-order operator that we denote by P, which
has a conformal structure (T. Branson in 1985);

o |If g = uﬁg, then we have the following transformation rule
_nt4
Ps(v) = u =4 Pg(uv).

® This operator is related to a “new” geometric quantity called Q-curvature;



Q-curvature (Some Geometric aspects)

In dimension 4, as an application of the Chern-Gauss-Bonnet Theorem we can verify
that

4m2x (M) = %fM (Wel2du + [y Qedpe

® Analogy between the quantity Qg of a four-manifold and the Gauss curvature of
a surface;

® S.-Y. Alice Chang, M. Eastwood, B. @rsted and P. C. Yang: What is Q-curvature?



Q-curvature problem

Given a (M, g) compact Riemannian manifold, there exists a metric g which is conformal
to g with constant Q-curvature?

® Case n=4:
® Chang-Yang '95 (Annals), Djadli-Malchiodi'08 (Annals) and Li-Li-Liu'12 (Adv.
Math.);

4
e [f n>5and g = un4g, then the problem is equivalent to find a positive solution
to the following PDE

n(n—4)(n* —4) ns

Pyu = 16 ur—* on M (1)

Let's focus on the case n > 5:



The Paneitz operator is

_5)2
Py = A2 +div ( 5 Ricg — 72((:_12))(:_42) Rgg> d+ "5%Q,.
and the Q-curvature is given by

Qe = =512 Rg+—(n4”)+(16”)16R2 ( ay | Ricg |,



The Paneitz operator is

Y]
Py = A2 +div ( 5 Ricg — 72((:_12))(:_42) Rgg> d+ "5%Q,.
and the Q-curvature is given by

Qs = ~a01) BeRe + 5 12 Re — 2y | Ricg [

What are the main difficulties?

® Variational problem, but ...
® [ack of maximum principle!

® Several new insights thanks to the works of Qing-Raske' 06 /MR, Gursky- Malchiodi
'15 JEMS and Hang-Yang'16 CPAM;



What happens in the noncompact case?

e What happens if the domain is noncompact? Ex: M\ X, X C M is a nonempty
set.

Given a compact manifold (M, g), find a conformal metric & which is complete in M\ X
with constant scalar (Q-curvature) curvature .

e Singular Yamabe problem (SYP) and Singular Q-curvature problem;



In the case of the SYP for n > 3, if u is a positive solution of

(n—1) 4

Agu— 22 Reu+ 22155 — 0 in M\X
u(x) — oo as x — X

4
then the metric @ = un2g is complete and has constant positive scalar curvature.



In the case of the SYP for n > 3, if u is a positive solution of

n+2

{ Dgu— iy Rgu + '7("4_2)un*2 =0 in M\X

(n-1)
u(x) — oo as x — X

4
then the metric @ = un2g is complete and has constant positive scalar curvature.

Existence of solutions is directly related with the size of the singular set X and the sign
of the scalar curvature!

e Aviles and McOwen' 88: If X is a k-submanifold, then a solution for SYP with
Rg < 0 exists iff, k > (n—2)/2.
® If a solution with R, > 0 exists then dim X < (n—2)/2;



Existence results: Case R, > 0

® Mazzeo, Pacard '96 JDG:
® X closed submanifold of M, 0 < dimX < (n—2)/2;
What if X ={p1,...,pc}? (R = n(n—1));
® Mazzeo,Pacard '99 Duke, R. Schoen '88 CPAM:

® M =S" X has at least two points;

® Byde '05 /ndiana:
® M is conformally flat and g is nondegenerate;

e A Silva Santos '09 Ann.Henri Poincaré;
® g is nondegenerate and Weyl tensor vanishes at the singular points;



Interesting facts...

® Analogy between Constant Scalar cur-
vature metrics and CMCs surfaces ;

e Different types of problems: extrinsic
and intrisic;




Singular @-curvature problem

Theorem (Hyder-Sire '20 J/-A)

Let X be a connected closed submanifold of M. Assume that Qg > 0, Qg # 0 and
Rg > 0. If0 < dim(X) < (n— 4)/2, then there exists an infinite dimensional family
of complete metrics on M\ X with constant Q-curvature.



Singular @-curvature problem

Theorem (Hyder-Sire '20 J/-A)

Let X be a connected closed submanifold of M. Assume that Qg > 0, Qg # 0 and
Rg > 0. If0 < dim(X) < (n— 4)/2, then there exists an infinite dimensional family
of complete metrics on M\ X with constant Q-curvature.

What happens when the singular set X = {p1, ..., px}?



Main result

e Suppose X = {p};

Theorem

Let (M", g) be a closed Riemannian manifold. Assume that Q; = n(n® — 4)/8 and that
g satisfies (H1) and (H2). Then, there exist a constant €y > 0 and a one-parameter
family of metrics {gc}ec(0,e0), conformal to g in M\{p} with constant Q-curvature.



General Idea: PDE viewpoint

If we write
u=uy+v

where wg is a good approximation for the solution, we have

0 = Hy(uo + v) = He(uo) + LE(v) + Qo(v) =

LZO(V) = _Hg(UO) - QO(V)



General Idea: PDE viewpoint

If we write
u=uy+v

where wg is a good approximation for the solution, we have

0 = Hy(uo + v) = He(uo) + LE(v) + Qo(v) =

LZO(V) = _Hg(UO) - QO(V)

If the linearized operator has a right inverse Gg, then find a solution of the problem is
equivalent to find a fixed point of the operator

N(v) = Gg(—Hg(u0) — Qo(v)).



Q-curvature case

Gluing method:
1. Interior analysis (near the singularity)

2. Exterior analysis
3. Gluing

® The asymptotic analysis by J. Ratzkin '20 indicates that the Delaunay solutions
are good approximations near the singularity;



Local models: Delaunay solutions

Consider the positive solutions u > 0 of the fourth-order problem

n(n—4)(n® — ntd
a2y = 41)é D RO} (D)

which are singular at the origin.

e C-S. Lin '98 CMH: Positive solutions of (D) are radially symmetric.
e R.L. Frank and T. Kdnig 20 classified all the solutions of (D);



Theorem (Frank, Koénig '20 )

If the origin is a nonremovable singularity. Then there existse € (0,£9) and T € (0, T),
such that "
ueT(x) = [x| 2 ve(=In|x| +T).

The solutions of (D) are called Delaunay solutions.



Theorem (Frank, Koénig '20 )

If the origin is a nonremovable singularity. Then there existse € (0,£9) and T € (0, T),
such that "
ueT(x) = [x| 2 ve(=In|x| +T).

The solutions of (D) are called Delaunay solutions.

e Even in fourth-order, this solutions are depending on two-parameters: € (necksize),
and T (period);



General idea: Geometric viewpoint
; 1



General idea: Geometric viewpoint
D 1

Chal "2 "%

e Constant function 1 + Green function with pole at p;



Interior analysis

Let a € R" and R € R. Consider the modified Delaunay solutions ug g a.

Consider the operator

n(n—4)(n*> —4) nwu

Hg(u) = Pyu — 16 un—4

We will seek solutions of the type ue g, + v > 0 such that

{ Hg(uera+v) =0 in  B.(p)\{p}
(Ug,ra+Vv)(x) = 0 as X —p



Expanding this equation, we obtain
Hg(us,R,a + V) = Hg(ue,R,a) + LgrE'R'a(V) + Qs,R,a =0

which is equivalent to solve

LER2 = e p,a) — LR (v) + L (V) — Qegs

Understand the linearized operator, denoted by L. g, := Lgs'R'a. Is there any “good
space”’ in which this operator admits a right inverse?



Expanding this equation, we obtain
Hg(us,R,a + V) = Hg(ue,R,a) + LgrE'R'a(V) + Qs,R,a =0

which is equivalent to solve

LER2 = e p,a) — LR (v) + L (V) — Qegs

Understand the linearized operator, denoted by L. g, := Lgs'R'a. Is there any “good
space”’ in which this operator admits a right inverse?

e Weighted Holder spaces;



Linearized operator

Proposition
Let R > 0, o € (0,1) and p € (1,2). Then there exists &g > 0 such that, for all
€ € (0,60), a€ R"and 0 < r < 1 with |a|r < ry for some ry € (0, 1), there is an

operator
Ge.Rar + Cp%4(Br(0)\{0}) — C1*(B,(0)\{0})

with the norm bounded independently of €, R, a and r, which is the right inverse of
Ls,R,a-

® This operator prescribes the Navier condition on the boundary: (high eingemodes);

LD YD ST Any Anid, - - -, eingenvalues of Agn;



Model operator

How can we add a term that “controls” what happens on the boundary?



Model operator

How can we add a term that “controls” what happens on the boundary?

Proposition

Let 0 < a < 1. There exists a bounded linear operator P, : 7/(C**(S7~1)) x
CH(S™1) = C3*(B,(0)\{0}), such that for all (¢g, $2) € C**(S"~1, R?), it holds

A277,(¢o, $) = 0 in  B.(0)\{0}
AP (o, ¢2) = r3¢> on 0B,
' (Pr(do. $2)) = ¢o on 0B,.



Interior analysis

Finaly, we will try to solve
Hg(ug,R 2+ Voo +v) =0
which is equivalent to
Le r.a(v) = the rest of the expansion.

We need to show that the RHS belongs to the domain of the right inverse.

® For dimensions 5 < n < 7 that it is truel

® For n > 8, we need to assume that

VW, (p) =0, for I=0,1,..., [”ES]. (H1)



® Related with the Weyl vanishing conjecture;

® (H1) implies that the metric has a good decay; (Some technical difficulties are
overcome by the construction of an auxiliary function)

What about the exterior domain?



Exterior analysis

® 1is an approx. solution + Green function G,(x) & |x|*~" of the linearized;

® \We assume that

g is nondegenerate (H2)



Exterior analysis

|4—n

® 1 is an approx. solution + Green function G,(x) ~ |x of the linearized,;

® \We assume that

g is nondegenerate (H2)

® Green function G, exists;
® Linearized operator is invertible;



Therefore,
Hg(14+XGp +v) =0 in M\B,(p)

which is equivalent to
Ly(v) = —Q*(XGp +v)



Therefore,
Hg(14+XGp +v) =0 in M\B,(p)

which is equivalent to
Ly(v) = —Q*(XGp +v)

What about the boundary?



Exterior Poisson operator

Let 0 < @ < 1. There exists a bounded linear operator Q, : C**(S"—1,R?) —
Cy® (R"\B,) such that for all (g, ¥2) € C**(S""1 R?), it holds

A%Q,(Yo,92) = O in R"\B,
AQ,(Yo.¥2) = r 2y, on 8B, (2)
Qr(Yo.¥2) = o on 0B,.



Gluing Procedure

Interior solution Exterior solution
UE = uE(av R! (pO- (PZ) VE = VE(>\' ¢0! ¢2)

To prove that the solutions will “glue”, we need to show that

U = Vg
Oy = Opve
Agus = Agve (9)

0Ague = 0,Agve

® To show the existence of parameters satisfying (G), we use fixed points arguments
again;

® Spectral decomposition: low and high eigenmodes;



Theorem (Main result):
Let (M", g) be a closed Riemannian manifold, n > 5. Assume that Q; = n(n® — 4)/8
and

(H1) The Weyl tensor vanishes at p, up to order [(n —8)/2] (n > 8);

(H2) g is nondegenerate;

Then, there exist a constant €9 > 0 and a one-parameter family of metrics {g;}, con-
formal to g in M\{p} with constant Q-curvature. Moreover, each g is asymptotically
Delaunay and g. — g uniformly on compact sets as € — 0.



Thank youl



Modified Delaunay solutions

X +IogR>.

— —alx|
x|

A metric g is nondegenerate if the linearized operator L, : C**(M) — C%*(M) is
surjective for some a € (0, 1), where

u
ue R a(x) = |x — a|x|2| Z v, (— log |x| + log

n(n® —4)(n
Lg(u)=Pru— ( fg( +4)u.




