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Conformal geometry and PDE’s

• Let (M; g) be a Riemannian manifold. We say that a metric g̃ is conformal to g
when there exists a positive function , such that

g̃ = g: (angle preserving)

Conformal geometry
Study of quantities or operators that are conformally invariant.

• This connection between conformal geometry and PDE’s was explored by
H.Yamabe in 1960;
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The Yamabe problem

• In 1960, H. Yamabe proposed the following problem:

Yamabe problem
Given a compact Riemannian manifold (M; g), find a conformal metric g̃ to g with
constant scalar curvature.

• If we write g̃ = u
4

n−2 g (n ≥ 3), this problem is equivalent to find a positive solution
of the following PDE:

∆gu −
n − 2

4(n − 1)
Rgu +

n(n − 2)

4
u

n+2
n−2 = 0 in M



• Lg := ∆g − n−2
4(n−1)Rg is called conformal laplacian, and it satisfies the property

g̃ = u
4

n−2 g ⇒ Lg̃ (v) = u−
n+2
n−2Lg (uv)

Some problems in conformal geometry ⇔ PDE with critical exponent

• Solved by Yamabe ’60, Trudinger ’68, Aubin ’76 and Schoen ’84;
• One of the first PDE with critical exponent to be fully solved;



The Paneitz operator

• In 1983 S. Paneitz discovered a fourth-order operator that we denote by Pg , which
has a conformal structure (T. Branson in 1985);

• If g̃ = u
4

n−4 g , then we have the following transformation rule

Pg̃ (v) = u−
n+4
n−4Pg (uv):

• This operator is related to a “new” geometric quantity called Q-curvature;



Q-curvature (Some Geometric aspects)

In dimension 4, as an application of the Chern-Gauss-Bonnet Theorem we can verify
that

4ı2ffl(M) = 1
8

R
M |Wg |2d—+

R
M Qgd—

• Analogy between the quantity Qg of a four-manifold and the Gauss curvature of
a surface;
• S.-Y. Alice Chang, M. Eastwood, B. Ørsted and P. C. Yang: What is Q-curvature?



Q-curvature problem
Given a (M; g) compact Riemannian manifold, there exists a metric g̃ which is conformal
to g with constant Q-curvature?

• Case n = 4:
• Chang-Yang ’95 (Annals), Djadli-Malchiodi’08 (Annals) and Li-Li-Liu’12 (Adv.

Math.);

• If n ≥ 5 and g̃ = u
4

n−4 g , then the problem is equivalent to find a positive solution
to the following PDE

Pgu =
n(n − 4)(n2 − 4)

16
u

n+4
n−4 on M (1)

Let’s focus on the case n ≥ 5;



The Paneitz operator is

Pg = ∆2
g + div

“
4
n−2 Ricg − (n−2)2+4

2(n−1)(n−2)Rgg
”

d + n−4
2 Qg :

and the Q-curvature is given by

Qg = − 1
2(n−1)∆gRg + n3−4n2+16n−16

8(n−1)2(n−2)2 R
2
g − 2

(n−2)2 |Ricg |2;

What are the main difficulties?

• Variational problem, but ...
• Lack of maximum principle!

• Several new insights thanks to the works of Qing-Raske’ 06 IMRN, Gursky- Malchiodi
’15 JEMS and Hang-Yang’16 CPAM;
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What happens in the noncompact case?

• What happens if the domain is noncompact? Ex: M\X, X ⊂ M is a nonempty
set.

Problem
Given a compact manifold (M; g), find a conformal metric g̃ which is complete in M\X
with constant scalar (Q-curvature) curvature .

• Singular Yamabe problem (SYP) and Singular Q-curvature problem;



In the case of the SYP for n ≥ 3, if u is a positive solution of(
∆gu − n−2

4(n−1)Rgu + n(n−2)
4 u

n+2
n−2 = 0 in M\X

u(x)→∞ as x → X

then the metric g̃ = u
4

n−2 g is complete and has constant positive scalar curvature.

Existence of solutions is directly related with the size of the singular set X and the sign
of the scalar curvature!

• Aviles and McOwen’ 88: If X is a k-submanifold, then a solution for SYP with
Rg < 0 exists iff, k > (n − 2)=2.
• If a solution with Rg ≥ 0 exists then dimX ≤ (n − 2)=2;
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Existence results: Case Rg ≥ 0

• Mazzeo, Pacard ’96 JDG:
• X closed submanifold of M, 0 < dimX ≤ (n − 2)=2;

What if X = {p1; : : : ; pk}? (Rg = n(n − 1));

• Mazzeo,Pacard ’99 Duke, R. Schoen ’88 CPAM:
• M = Sn, X has at least two points;

• Byde ’05 Indiana:
• M is conformally flat and g is nondegenerate;

• A.Silva Santos ’09 Ann.Henri Poincaré;
• g is nondegenerate and Weyl tensor vanishes at the singular points;



Interesting facts...

• Analogy between Constant Scalar cur-
vature metrics and CMCs surfaces ;
• Different types of problems: extrinsic

and intrisic;



Singular Q-curvature problem

Theorem (Hyder-Sire ’20 JFA)
Let X be a connected closed submanifold of M. Assume that Qg ≥ 0, Qg 6≡ 0 and
Rg ≥ 0. If 0 < dim(X) ≤ (n − 4)=2, then there exists an infinite dimensional family
of complete metrics on M\X with constant Q-curvature.

What happens when the singular set X = {p1; :::; pk}?



Singular Q-curvature problem

Theorem (Hyder-Sire ’20 JFA)
Let X be a connected closed submanifold of M. Assume that Qg ≥ 0, Qg 6≡ 0 and
Rg ≥ 0. If 0 < dim(X) ≤ (n − 4)=2, then there exists an infinite dimensional family
of complete metrics on M\X with constant Q-curvature.

What happens when the singular set X = {p1; :::; pk}?



Main result

• Suppose X = {p};

Theorem

Let (Mn; g) be a closed Riemannian manifold. Assume that Qg = n(n2 − 4)=8 and that
g satisfies (H1) and (H2). Then, there exist a constant "0 > 0 and a one-parameter
family of metrics {g"}"∈(0;"0), conformal to g in M\{p} with constant Q-curvature.



General Idea: PDE viewpoint

If we write
u = u0 + v

where u0 is a good approximation for the solution, we have

0 = Hg (u0 + v) = Hg (u0) + Lu0g (v) + Q0(v)⇒

Lu0g (v) = −Hg (u0)− Q0(v)

If the linearized operator has a right inverse G0
g , then find a solution of the problem is

equivalent to find a fixed point of the operator

N(v) = G0
g (−Hg (u0)− Q0(v)):
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Q-curvature case

Gluing method:
1. Interior analysis (near the singularity)
2. Exterior analysis
3. Gluing

• The asymptotic analysis by J. Ratzkin ’20 indicates that the Delaunay solutions
are good approximations near the singularity;



Local models: Delaunay solutions

Consider the positive solutions u > 0 of the fourth-order problem

∆2u =
n(n − 4)(n2 − 4)

16
u

n+4
n−4 in Rn\{0} (D)

which are singular at the origin.

• C-S. Lin ’98 CMH: Positive solutions of (D) are radially symmetric.
• R.L. Frank and T. König ’20 classified all the solutions of (D);



Theorem (Frank, König ’20 APDE)
If the origin is a nonremovable singularity. Then there exists " ∈ (0; "0) and T ∈ (0; T"),
such that

u";T (x) = |x |
4−n
2 v"(− ln |x |+ T ):

The solutions of (D) are called Delaunay solutions.

• Even in fourth-order, this solutions are depending on two-parameters: " (necksize),
and T (period);
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General idea: Geometric viewpoint

• Constant function 1 + Green function with pole at p;



General idea: Geometric viewpoint

• Constant function 1 + Green function with pole at p;



Interior analysis

Let a ∈ Rn and R ∈ R. Consider the modified Delaunay solutions u";R;a.

Consider the operator

Hg (u) = Pgu −
n(n − 4)(n2 − 4)

16
u

n+4
n−4

We will seek solutions of the type u";R;a + v > 0 such that(
Hg (u";R;a + v) = 0 in Br (p)\{p}
(u";R;a + v)(x)→∞ as x → p



Expanding this equation, we obtain

Hg (u";R;a + v) = Hg (u";R;a) + L
u";R;a
g (v) + Q";R;a = 0

which is equivalent to solve

L
u";R;a

‹ v = −Hg (u";R;a)− L
u";R;a
g (v) + L

u";R;a

‹ (v)− Q";R;a

Understand the linearized operator, denoted by L";R;a := L
u";R;a

‹ . Is there any “good
space” in which this operator admits a right inverse?

• Weighted Hölder spaces;
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Linearized operator

Proposition
Let R > 0, ¸ ∈ (0; 1) and — ∈ (1; 2). Then there exists "0 > 0 such that, for all
" ∈ (0; "0), a ∈ Rn and 0 < r < 1 with |a|r ≤ r0 for some r0 ∈ (0; 1), there is an
operator

G";R;a;r : C0;¸
—−4(Br (0)\{0})→ C4;¸

— (Br (0)\{0})

with the norm bounded independently of ", R, a and r , which is the right inverse of
L";R;a.

• This operator prescribes the Navier condition on the boundary: (high eingemodes);

• –0; –1; : : : ; –n; –n+1; : : :, eingenvalues of ∆Sn ;



Model operator

How can we add a term that “controls” what happens on the boundary?

Proposition
Let 0 < ¸ < 1. There exists a bounded linear operator Pr : ı′′r (C4;¸(Sn−1r )) ×
C4;¸(Sn−1r )→ C4;¸

2 (Br (0)\{0}); such that for all (ffi0; ffi2) ∈ C4;¸(Sn−1;R2), it holds8><>:
∆2Pr (ffi0; ffi2) = 0 in Br (0)\{0}
∆Pr (ffi0; ffi2) = r−2ffi2 on @Br

ı′′(Pr (ffi0; ffi2)) = ffi0 on @Br :
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Interior analysis

Finaly, we will try to solve

Hg (u";R;a + vffi0;ffi2 + v) = 0

which is equivalent to

L";R;a(v) = the rest of the expansion:

We need to show that the RHS belongs to the domain of the right inverse.

• For dimensions 5 ≤ n ≤ 7 that it is true!
• For n ≥ 8, we need to assume that

∇lWg (p) = 0; for l = 0; 1; : : : ;

»
n − 8

2

–
: (H1)



• Related with the Weyl vanishing conjecture;
• (H1) implies that the metric has a good decay; (Some technical difficulties are

overcome by the construction of an auxiliary function)

What about the exterior domain?



Exterior analysis

• 1 is an approx. solution + Green function Gp(x) ≈ |x |4−n of the linearized;
• We assume that

g is nondegenerate (H2)

• Green function Gp exists;
• Linearized operator is invertible;
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Therefore,
Hg (1 + –Gp + v) = 0 in M\Br (p)

which is equivalent to
L1g (v) = −Q1(–Gp + v)

What about the boundary?



Therefore,
Hg (1 + –Gp + v) = 0 in M\Br (p)

which is equivalent to
L1g (v) = −Q1(–Gp + v)

What about the boundary?



Exterior Poisson operator

Proposition
Let 0 < ¸ < 1. There exists a bounded linear operator Qr : C4;¸(Sn−1r ;R2) →
C4;¸
4−n(Rn\Br ) such that for all ( 0;  2) ∈ C4;¸(Sn−1r ;R2), it holds8><>:

∆2Qr ( 0;  2) = 0 in Rn\Br
∆Qr ( 0;  2) = r−2 2 on @Br
Qr ( 0;  2) =  0 on @Br :

(2)



Gluing Procedure

Interior solution Exterior solution
u" := u"(a; R; ’0; ’2) v" := v"(–;  0;  2)

To prove that the solutions will “glue”, we need to show that8>>><>>>:
u" = v"

@ru" = @rv"
∆gu" = ∆gv"

@r∆gu" = @r∆gv"

(G)

• To show the existence of parameters satisfying (G), we use fixed points arguments
again;
• Spectral decomposition: low and high eigenmodes;



Theorem (Main result):

Let (Mn; g) be a closed Riemannian manifold, n ≥ 5. Assume that Qg = n(n2 − 4)=8
and
(H1) The Weyl tensor vanishes at p, up to order [(n − 8)=2] (n ≥ 8);
(H2) g is nondegenerate;

Then, there exist a constant "0 > 0 and a one-parameter family of metrics {g"}, con-
formal to g in M\{p} with constant Q-curvature. Moreover, each g" is asymptotically
Delaunay and g" → g uniformly on compact sets as "→ 0.



Thank you!



Modified Delaunay solutions

u";R;a(x) = |x − a|x |2|
4−n
2 v"

„
− log |x |+ log

˛̨̨̨
x

|x | − a|x |
˛̨̨̨

+ logR

«
:

Definition
A metric g is nondegenerate if the linearized operator Lg : C4;¸(M) → C0;¸(M) is
surjective for some ¸ ∈ (0; 1), where

Lg (u) = Pgu −
n(n2 − 4)(n + 4)

16
u:


