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Introduction



Given a bounded domain 2 C R”, we investigate the doubly
degenerate fully non-linear elliptic problem

H(x, Vu)F(x,D?u) = f(x) in Qi (v),
[Vul = Q(x) on  F(u).

where



o H:Q xR" = R behaves as
Ly ICp,q,a(Xa 1) < H(x, &) < Lo~ ’Cp,q,u(Xv 1€1)
for constants 0 < L1 < Ly < oo, with

Kp.q.a(x, [€]) == §]P + a(x)[€]7, for (x,§) € Q x R";
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H:Q x R" — R behaves as

Ly ICp,q,a(Xa I€]) < H(x,&) < La- Kp,q,a(xv 1€1)

for constants 0 < L1 < Ly < oo, with

Kp,q.a(x; [€]) :== [€P + a(x)[€|7, for (x,§) € Q x R,

F : ©Q x Sym(n) — R is a uniformly elliptic operator;
Q > 0 is a continuous function;
fel*(Q)ncC(Q);

u>0in Q;

Qt(u) == {x €Q:u(x) >0}

(u) == 0Q+ (u) N Q.
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e In a first moment, we establish optimal Lipschitz regularity to
viscosity solutions;
e We prove the non-degeneracy of solutions;

e The next step is to investigate the regularity of the free

boundary §(u). We prove that flat free boundaries are of class
Cl,ﬁ;

e Finally, we prove that Lipschitz free boundaries are os class
cLh.



One of the main signatures of this model is its interplay between
two different kinds of degeneracy laws, in accordance with the
values of the modulating function a.

QxR"3 (x,8) = H(x, &) o [§JP + a(x)[¢]T 0<p<g<oo

and 0<ac C%Q).



For related regularity estimates and free boundary problems driven
by second order operators with a single degeneracy law:

e Aratjo, Ricarte, Teixeira - (Calc. Var. PDE - 2015), (Ann.
Inst. H. Poincaré Anal. Non Linéaire - 2017);

e Birindelli, Demengel - (ESAIM Control Optim. Calc. Var. -
2014);

e Birindelli, Demengel, Leoni - (NoDEA - 2019);
e Da Silva, Leitdo, Ricarte - (Math. Nachr. - 2021);

e Da Silva, Vivas - (Rev. Mat. Iberoam. - 2021), (Discrete and
Continuous Dynamical Systems, 2021);

e Imbert, Silvestre - (Adv. Math. - 2012), (JEMS - 2016).



The model in (1) can be considered the non-divergence form of
certain variational integrals from the Calculus of Variations with
double phase structure:
_ 1 a(x)
(w, f) — min —|Vw|P + —=|Vwl|9 — fw | dx,
Q \P q
where (w, f) € (WG (Q) + w0, L™(2)), a € CO%(Q, [0, %)), for
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The model in (1) can be considered the non-divergence form of
certain variational integrals from the Calculus of Variations with
double phase structure:

1
(w,f) — min/ <]VW\’J + M\VW!" — fw> dx,
Q \P q
where (w, ) € (W&’p(Q) + up, L’"(Q)), a € Co(Q,[0,00)), for
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e Colombo, Mingione - (Arch. Rational Mech. Anal. - 2015);

e Baroni, Colombo, Mingione - (Calc. Var. PDE - 2018);

e De Filippis - (JDE - 2019);

e De Filippis, Mingione - (The Journal of Geometric Analysis -
2020).



Historically the mathematical investigation of the regularity of the
free boundary §(u) in problems like (1) has a large literature and it
has presented wide advances in the last three decades or so.



Uniform Elliptic case - Variational approach.

The case f =0 and H(x,&) = 1, was studied by minimizing
J(u) = / f(x, u(x), Vu(x))dx — min,
QN{u>0}

where was proved existence of a minimum and regularity of the free
boundary via blow-up techniques, or via singular perturbation methods

for the problem Au. = p.(u.).

e Alt, Caffarelli - (J. Reine Angew. Math. - 1981);

e Caffarelli - (Rev. Mat. Iber. - 1987), (Comm. Pure Appl.
Math. - 1989).



Degenerate cases — Variational approach.

e Danielli, Petrosyan - (Calc. Var. PDE - 2005) established the
regularity near “flat points” of the free boundary of
non-negative solutions to the minimization problem

minJp(u) with Tp(u) := / (IVulP + A x u>0}) dx,
Q

which is governed by the p-Laplacian operator, for f = 0,
1< p<ooand A >D0.



e Martinez, Wolanski - (Adv. Math. - 2008) study the

optimization problem of minimizing
minJg(u) with Jc(u) = / (G(]VUD + /\OX{u>0}) dx,
Q

in an Orlicz-Sobolev scenario, thereby extending the
Alt-Caffarelli's theory.
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The study of existing, Lipschitz regularity and regularity of the free
boundary for homogeneous/inhomogeneous free boundary

problems driven by p(x)-Laplacian type operators as follows

-

{div(]Vup(X)_2Vu) = f(x) in Qi(uv),

[Vul| = A
can be found

e Fernandez Bonder, Martinez, Wolanski - (Nonlinear Anal. -
2010;

e Lederman, Wolanski - (Interfaces Free Bound., 2017), (J.
Math. Anal. Appl., 2019), (Math. Eng., 2021).
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Uniform elliptic case — Non-variational approach.
e Feldman - (Indiana Univ. Math. J. - 2001)

For the context of fully non-linear elliptic equations, the
homogeneous problem, i.e. f =0 (with H(x,&) = 1).
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Uniform elliptic case — Non-variational approach.
e Feldman - (Indiana Univ. Math. J. - 2001)

For the context of fully non-linear elliptic equations, the

homogeneous problem, i.e. f =0 (with H(x,&) = 1).

e De Silva - (Interfaces Free Bound. - 2011);
e De Silva, Ferrari, Salsa - (J. Math. Pures Appl. - 2015).

For the non-homogeneous case, f # 0 (with H(x,§) = 1), in the
one and two-phase scenarios, respectively.
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In turn, the FBP considered in (1) also appears as the limit of
certain inhomogeneous singularly perturbed problems in the
non-variational context of high energy activation model in
combustion and flame propagation theories.

e Aratjo, Ricarte, Teixeira - (Ann. Inst. H. Poincaré Anal. Non
Linéaire - 2017);

e Ricarte, Silva - (Interfaces and Free Bound. - 2015);

e Ricarte, Teixeira - (J. Funct. Anal. - 2011).
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The simplest mathematical model (in this case) is given by: for
each € > 0 fixed, we seek a non-negative profile u® satisfying

{[|Vu€|p+a(x)|Vu5q]Au€ I3(£) +£(x) in Q
v (x) = g(x) on 01,

in the viscosity sense for suitable data p, g € (0,0), a, g, where
B: behaves singularly of order o (1) near e-level surfaces. In such
a scenario, existing solutions are locally (uniformly) Lipschitz

continuous.

e da Silva, Jinior, Ricarte - (Rev. Mat. Iberoam. - 2022)
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Assumptions



Viscosity Solutions

Definition
Let u € C(Q2) nonnegative. We say that u is a viscosity

supersolution (resp.subsolution) to

H(x, Vu)F(x,D?u) = f(x) in Q4 (v),
Vul = Q(x) on  F(u).

if and only if the following conditions are satisfied:

ii5)



(F1) If € C?(Q*(u)) touches u by below (resp. above) at
xp € QT (u) then

H(x0, Vé(x0))F (x0, D*p(x0)) < f(x0)

(resp. H(x0, V(x0))F (x0, D*p(x0) > f(x0)) -

(F2) If p € C%(Q) and ¢ touches u below (resp. above) at
xo0 € §(u) and |V¢|(x0) # 0 then

[Vol(xo) < Q(x)  (resp. [Vl(x0) = Q(x0))

We say that u is a viscosity solution if it is a viscosity supersolution
and a viscosity subsolution.

16



Continuity and normalization condition

We suppose that
Q3> x> F(x,-) € CO%(Sym(n)) and F(-,0,) =0 where O, is
the zero matrix.

This normalizing assumption can be impose without loss of
generality.

17



Uniform ellipticity

For any pair of matrices X,Y € Sym(n)
PiaX—Y) < F(x,X) = F(x,Y) S PyA(X —Y)

where Pic A stand for Pucci’s extremal operators given by

PiaX) = 2D e(X)+A D e(X)

>0 <0
and P (X) =AY e(X)+ ) e(X)
>0 e <0

for ellipticity constants 0 < A < A < oo, where {¢;j(X)}; are the

eigenvalues of X.

18



w—continuity of coefficients

There exist a uniform modulus of continuity w : [0, 00) — [0, c0)
and a constant Cg > 0 such that

F(x,X) = F(x0, X
Q3 x,x — Or(x,xp) := sup |F(x,X) (x0, X)|

XeSym(n) I1X]|
X0

< Crw(|x — xol),

which measures the oscillation of coefficients of F around xg.
Finally, we define

@F(X7 XO)

Fllcw(q) := inf :
Pl o= nf{ Cr > 0: FE22

< Cp, Vx,x €9, x;éxo}.

19



In our studies, the diffusion properties of the model (1) degenerate
along an a priori unknown set of singular points of existing
solutions:

S(u,Q) :={x e Q:|Vu(x)| =0}.

20



In our studies, the diffusion properties of the model (1) degenerate
along an a priori unknown set of singular points of existing
solutions:

S(u,Q) :={x € Q:|Vu(x)| = 0}.
For this reason, we will enforce that H : Q x R” — [0, c0) behaves
as

Ly "Cp,q,a(X, |£D < %(Xaé) <L-K p,q,a ( |£‘)

for constants 0 < L1 < Ly < o0, where

Kp.q.a(x, [€]) := [€]° + a(x)[¢]7, for (x,§) € Q@ x R".
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In addition, we suppose that the exponents p, g and the
modulating function a(-) fulfil

0<p<g< and a € C°Q,[0,0)).
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In addition, we suppose that the exponents p, g and the
modulating function a(-) fulfil

0<p<g< and a € C°Q,[0,0)).

Finally, we will assume the following condition: there exist a
universal constant C; > 0 and a modulus of continuity
wq : [0,00) — [0, 00) such that

[H(x,€) = H(y, )| < Cawa(lx —y[)IE|7 V¥ (x,y,§) € X x Q2 xR".

21



Optimal Lipschitz Regularity




Lipschitz regularity of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.
Math.)

Let Q € CO(By;[0,00)) N L>(By; [0,00)) and u be a bounded viscosity
solution to (1) in By. Then, there exists a universal constant

Cy =Ci(n, N\, N\ a, Ly, p,q) > 0 such that

1 1
u(x0) < C1. <|\umoo<51) + Qoo 5y + max{|\fuLm<B o 11 )}) dist(x0, §(1)),

for all xo € By 2, i.e., solutions have at most linear behavior close to free
boundary points. Particularly, there exists
G = G(n, A\ N\, L1, p,q,]||Fllce) > 0 such that

I I
I1Vullioo(8, 5) < Ca- <HUHL°°(BI) + 1Qll oo (5, ) + max {ufnf:cl(Bl) : ufui;l(sl)} + 1) :

22



The proof of the Lipschitz regularity can be obtained employing
some ideas performed for the scenario of singularly perturbed
FBPs.

e Araljo, Ricarte, Teixeira - (Ann. Inst. H. Poincaré Anal. Non
Linéaire - 2017);

da Silva, Junior, Ricarte - (Rev. Mat. Iberoam. - 2022);
Ricarte, Silva - (Interfaces and Free Bound., 2015);

Ricarte, Silva, Teymurazyan - (JDE - 2017);

Ricarte, Teixeira - (J. Funct. Anal. - 2011).
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Sketch of the proof:

o Take xo € By, such that xo € Bfr/2(u). We suppose that
dist(xo, §(v)) < 1/2 and consider the scaled funtion

u(xo + rdox)
Vxo,do (x) :

"~ dist(x0, §(v))

for 0 < r < 1 to be chosen.

24



Sketch of the proof:

o Take xo € By, such that xo € Bfr/2(u). We suppose that
dist(xo, §(v)) < 1/2 and consider the scaled funtion

Voo oo () = u(xo + rdox)
0.0 dist(xo, §(u))
for 0 < r < 1 to be chosen.

e The idea is to prove that vy, 4,(0) < Co for some universal
constant Cp > 0.

24



® V., 4 iS a non-negative viscosity solution of

Hdeo(X?vvxoydo)FXo»do(X> D2VXoyd0) = &o,do(x) in By
where

) o= 2dgF (Xo + rdpx, de X)

) = rPH (xo + rdyx, ;f)
Uyo.dp(X) = rP79a(xo + rdox)

) = rPT2dyf(xg + rdox)

) rQ(xo + rdox)

where Fy o, Hxo,do and ay, 4, satisfy the structural
assumptions.

25



e Consider the annulus A1 ; := By \ B1 and the barrier function
2? 2

o A%’l — R4 given by

d(x) = po - (e—5|x|2 B e_5>

where 119, > 0 will be chosen.

26



e Consider the annulus A1 ; := By \ B1 and the barrier function
2? 2

®: A, — Ry given by
2’

d(x) = po - (e—5|x|2 B e_5>

where 119, > 0 will be chosen.

e We show that @ is a strict viscosity subsolution to

29

HXo,do(Xv vqD)Fxo,do(xa D2¢) = fx(,,do(X) in A 1

provided we may adjust appropriately the values of g, > 0
and r > 0.

26



e Choose g := (e /% — e7%)71 -airéf Vio.do (X) > 0. It follows
1

2

that
D(x) < vy dp(x) on 0.,4%’1.
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e Choose g := e 0% — =) 1. inf Voo do (X) > 0. It follows
oB, 0%

2

that
D(x) < vy dp(x) on 0.,4%’1.

e From the Comparison Principle, we can conclude that

D(x) < v ap(x) in Ay

2
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e Choose g := (e /% — e7%)71 -airéf Vio.do (X) > 0. It follows
1

2

that
D(x) < vy dp(x) on 0.,4%’1.

e From the Comparison Principle, we can conclude that

D(x) < v ap(x) in Ay

2

o Let zg € §(vi,4) be a point that achieves the distance, i.e.,
rdy = |xo — zp| and consider yg := Zor%.,oxo € 0B;.

27



e Taking into account the free boundary condition, we obtain
concerning the normal derivatives in the direction v at xp the

following

9% (o)

de 9 <
pHooe T = o

< 1QllLoo(8y)>

which implies that

alrE}fl Vig,do (X) < HQHL"O(Bl)C((S)'

2

28



e By invoking the Harnack inequality and the definition of
Vio,do It follows that

1 1 f,a
sup  u(x) < Codp - {HQHLW(BI) + max {(r"“do)v+1 (P2 dg) a1 } Moy 0%
BEQ(XO)

2

b
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e By invoking the Harnack inequality and the definition of
Vio,do It follows that

1 1 f,a
sup  u(x) < Codp - {HQHLW(BI) + max {(r"“cfo)v+1 (P2 dg) a1 } Moy 0%
BEQ(XO)

2

e By Ci’f—estimates we have

<.
[Vu(x)| < C HVxO,doHLOO(B .

1
) +1+ Hon,do’ZH(

)

1
2

b
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Non-degeneracy of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.
Math.)

Let Q € CO(By;[0,00)) N L>(By; [0,00)) and u be a bounded viscosity
solution to (1) in By. Further, suppose that §(u) is a Lipschitz graph in
By with F(u) N Bf/z(u) # (). There exists a universal ng € (0,1) and a
universal constant C, = C(n, \,\, p, q,||F| c«(,)) > 0 such that if

1Q — 1| oo (By) < M0

then
u(xp) > C..dist(xo, F(v)),

for all xo € Bf/Q(u); i.e. solutions growth at least in a linear fashion close

to free boundary points.

30



For the proof of the non-degeneracy result, the argument follows
as the one in [De Silva - Interfaces Free Bound., 2011], after
constructing the appropriate barrier.

31



For the proof of the non-degeneracy result, the argument follows
as the one in [De Silva - Interfaces Free Bound., 2011], after
constructing the appropriate barrier. We use the same idea as in
the proof of Lipschitz continuity; but here we need to prove that
Vio.do(0) > C; using the Harnack inequality and the Lipschitz
continuity.
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Free Boundary Regularity




Flatness implies C!

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.

Math.)
Let u be a viscosity solution to (1) in By. Suppose that

0€F(u), Q(0)=1 and F(0, X) is uniformly elliptic. Then, there
exists a universal constant € > 0 such that, if the graph of u is
E-flat in By, i.e.

(xo — &) <u(x) < (xp+8)T for x € By,

and
max{||fHL°°(B1)a [Q]CO,&(Bl) 5 HFHCW(Bl)} < 57

then § (u) is CH2 in By /o for some (universal) 3 € (0,1).

32



The proof of the previous theorem is based on an improvement of
flatness property for the graph of a solution u: if the graph of u
oscillates away ¢ from a hyperplane in B; then in Bs, it oscillates
S¢e away from possibly a different hyperplane.
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The proof of the previous theorem is based on an improvement of
flatness property for the graph of a solution u: if the graph of u
oscillates away ¢ from a hyperplane in B; then in Bs, it oscillates
5%—5 away from possibly a different hyperplane. The fundamental
tools to achieve this property are a Harnack type inequality and

characterizing of limiting solutions.

e De Silva - (Interfaces Free Bound. - 2011)
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In the proof of the Harnack inequality we have some difficulties to
overcome, since the structure of the operator
Gp.q[u] := H(x, Vu)F(x, D?u) requires some non-trivial

adaptations.
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In the proof of the Harnack inequality we have some difficulties to
overcome, since the structure of the operator

Gp.q[u] := H(x, Vu)F(x, D?u) requires some non-trivial
adaptations. In fact, if £ is an affine function and u is a solution to
the problem

H(x, Vu)F(x, D?u) = f(x) in By(xo), where xo = 1‘10 (2)

we can not conclude that u+ ¢ is a solution to the equation (2) yet.
In contrast, for p = g = 0 we know u + / is still solution for (2). In
effect, De Silva have used this fact, thereby allowing us to apply

the Harnack inequality for v(x) = u(x) — x,, which plays a crucial

role in reaching an improvement of flatness for the graph of u.
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Lemma (Improvement of flatness)
Let u be a viscosity solution to (1) in Q under assumptions
1fllio@) < €% and ||Q — 1|1 < &
with 0 € §(u) and assume it satisfies
(xn — &)t <u(x) < (xa +e)T  forx € By.

Then there exists a universal constant ry > 0 such that if
0<r<rnand0<e<egy (with ey depending on r), then

() - r%)Jr < () < () + r%>+ x € B,

for some v € S"~1 (unity sphere) and |v — e,| < Ce? for a
universal constant C > 0.
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Sketch of the proof (Flatness implies C*?):

e Let u be a viscosity solution to the free boundary problem

{H(X,VU)F(X,D2U) = f(x) in Bf(u),
IVul = Q(x) on F(uv)

with 0 € § (u) and Q (0) = 1.
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Sketch of the proof (Flatness implies C*?):

e Let u be a viscosity solution to the free boundary problem

{H(X,VU)F(X,D2U) = f(x) in Bf(u),
IVul = Q(x) on F(uv)

with 0 € § (u) and Q (0) = 1.

e Assume further that
(o — &) <u(x) < (xp+&)T for x € By,
and

maX{HfHLOO(Bl)v [Q]CO,a(Bl) 9 ||F||Cw(Bl)} < é"

with € > 0 to be fixed.
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e Fix ¥ > 0 a universal constant such that

o (1)i
r < min < ro, 7 ,

where rg comes from the improvement of flatness Lemma.

After chosen 7, let g := €o(7) be the constant given by
improvement of flatness Lemma.
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e Fix ¥ > 0 a universal constant such that

o (1)i
r < min < ro, 7 ,

where rg comes from the improvement of flatness Lemma.

After chosen 7, let g := €o(7) be the constant given by
improvement of flatness Lemma.
o Let

g .= 5(2) and g4 ;= 2 Xe,.
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e Fix ¥ > 0 a universal constant such that

r<m| {r (1)1}
= ! 0, ’
4

where rg comes from the improvement of flatness Lemma.
After chosen 7, let g := €o(7) be the constant given by
improvement of flatness Lemma.

o let

g .= 5(2) and g4 ;= 2 Xe,.

e The choice of € ensures that
(o —e0)T < u(x) < (Xn+e0)" in By

which implies by the improvement of flatness Lemma that
there exists v; with |v1| = 1 and |v; — e,| < Ce? such that

((x, Vi) — F%O)+ <u(x) < ((x, V1) + F%O>+ in By



e Now, consider the sequence of re-scaling profiles uy : By — R

given by
U()\kX)
ug(x) =
k(x) »
with A\ = 7K, k =0,1,2,..., for a fixed 7 as previously.
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e Now, consider the sequence of re-scaling profiles uy : By — R

given by
uk(x) = U(XX)
with A\ = 7K, k =0,1,2,..., for a fixed 7 as previously.
e uy fulfils in the viscosity sense the following free boundary
problem
H(x, Vur)Fr(x, D?u) = f(x) in B (uk),
Vue| = Qk on F(uk),
where
Fo(x,X) = MeF (Aix, A 1X)
Hi(x,€) = H(M\x,§)
ax(x) = a(Akx)
fk(X) = )\kf()\kX)
Qi(x) = Q(Mkx).

where Fy,Hy and ay satisfy the structural assumptions.



e We prove that in By we have

Ifi(x)] < Ei and

|Qu(x) = 1] < &k
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e We prove that in By we have

()| < ek and  [Qu(x) — 1] < <.

o We iterate the above argument and obtain that
(6 vi) — &)™ < uk(x) < ({x, k) +ex)®

with ‘I/k‘ = i, |I/k = Vk—i—l‘ < Cey (With g = en).

in B,
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e Therefore

((x, Vk)

with

40



e Therefore

((X,z/k> — 2—2r )+ <u(x) < ((x,yk) + %#)Jr in

with

e Furthermore, (3) implies that

8{u>0} N B C {|<x,uk>y < %Tk

which implies that B3/, N §(u) is a C1¥ graph.

b
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Lipschitz implies C1*

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.
Math.)
Let u be a viscosity solution for the free boundary problem (1).

Assume further that 0 € F(u), f € L°°(By) is continuous in By (u)
and Q(0) > 0. If §(u) is a Lipschitz graph in a neighborhood of 0,
then §(u) is C1% in a (smaller) neighborhood of 0.
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Comments about the proof:

We use a blow-up argument from the previous theorem and the
approach used in [Caffarelli - Rev. Mat. Iberoamericana, 1987]:
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Comments about the proof:

We use a blow-up argument from the previous theorem and the
approach used in [Caffarelli - Rev. Mat. Iberoamericana, 1987]:

e We consider the re-scaled functions

() = g, () = 20

with 0, — 0 as k — oo;
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e Because of the non-degeneracy and the Lipschitz continuity
for uy's, ux — Us uniformly on compact sets. Then, we can

prove that u., solves

Fo(D%us) = 0 in {ux >0},
[Vuso| = 1 on F(uoo),

with §(us) Lipschitz continuous (via compactness lemma and

cutting lemma).
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e Also, we can prove that uy, is a one-phase solution, i.e. up to

rotations,

so(X) = X,

44



e Also, we can prove that uy, is a one-phase solution, i.e. up to

rotations,

Uso(X) = x;T;

e Thus, for k large enough we have
|uk — too|lLoo(my) < €,

where £ comes from the previous lemma;
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e Also, we can prove that uy, is a one-phase solution, i.e. up to

rotations,

so(X) = X,

e Thus, for k large enough we have
|uk — too|lLoo(my) < €,

where £ comes from the previous lemma;

e Therefore, uy fulfils &-flat in By, which implies that §(ug) is a
graph C%? and consequently F(u) are C1#, for some

B €(0,1).
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Some extensions




We can extend our results for nonlinear elliptic equations with
non-homogeneous term as follows.
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We can extend our results for nonlinear elliptic equations with
non-homogeneous term as follows.

e Multi degenerate operators in non-divergence form.
An extension of our results holds to general multi-degenerate
fully nonlinear models given by

N
G(x, Du, D?u) := (Du\" + Za;(x)\Du|q/> F(x, D?u),
i=1

where 0 < a; € C%(Q), i € {1,---, N}, and

O<p<qgr <---<gn < oo, which are a natural
non-variational counterpart of certain multi-phase variational
problems treated in [De Filippis, Oh - J. Differential
Equations, 2019].
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¢ Doubly degenerate (p, g)—Laplacian in non-divergence
form.

Other interesting class of degenerate operators where our
results work out is the double degenerate p—Laplacian type
operators, in non-divergence form, for 2 < py < go < oo and
1< p<oc:

Gpo,q0(X: & X) = Hpg,q0 (X, §) Fp(&, X)

where
Hopo,0 (%, ) == ]2 + a(x)[¢]® 2

and

Fo(6, X) = Tr [(Idn +(p— 2)§§f> X}

is the well-known Normalized p—Laplacian operator. See
[Attouchi, Parviainen, Ruosteenoja - J. Math. Pures Appl.,
2017] and [da Silva, Ricarte - Calc. Var. PDE, 2020].
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e Fully nonlinear models with non-standard growth.
Other example we have in mind is the class of
variable-exponent, degenerate elliptic equations in
non-divergence form, which is, in some extent, the
non-variational counterpart of certain non-homogeneous
functionals satisfying nonstandard growth conditions:

Gpix,a00 (%, & X) = (€17 + a(x)[€]7¥)) F(x, X),

for rather general exponents p, g € C°($; (0,c). See [Bronzi,
Pimentel, Rampasso, Teixeira - J. Funct. Anal., 2020].
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OBRIGADA PELA ATENCAO! =)
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