Regularity theory for a free boundary problem with double degeneracy

Giane C. Rampasso

IMC-UNIFEI-Brazil

Seminários de EDP - IMECC - Unicamp

Introduction

Given a bounded domain $\Omega \subset \mathbb{R}^n$, we investigate the doubly degenerate fully non-linear elliptic problem

$$\begin{cases}
\mathcal{H}(x, \nabla u)F(x, D^2u) = f(x) & \text{in } \Omega_+(u), \\
|\nabla u| = Q(x) & \text{on } \mathfrak{F}(u).
\end{cases} \tag{1}$$

where

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

for constants $0 < L_1 \le L_2 < \infty$, with

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|):=|\xi|^p+\mathfrak{a}(x)|\xi|^q, \ \ \text{for} \ \ (x,\xi)\in\Omega\times\mathbb{R}^n;$$

• $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

- $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;
- $Q \ge 0$ is a continuous function;

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

- $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;
- $Q \ge 0$ is a continuous function;
- $f \in L^{\infty}(\Omega) \cap C(\Omega)$;

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

- $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;
- $Q \ge 0$ is a continuous function;
- $f \in L^{\infty}(\Omega) \cap C(\Omega)$;
- $u \ge 0$ in Ω ;

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

- $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;
- $Q \ge 0$ is a continuous function;
- $f \in L^{\infty}(\Omega) \cap C(\Omega)$;
- $u \ge 0$ in Ω ;
- $\Omega^+(u) := \{x \in \Omega : u(x) > 0\};$

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n;$$

- $F: \Omega \times \operatorname{Sym}(n) \to \mathbb{R}$ is a uniformly elliptic operator;
- $Q \ge 0$ is a continuous function;
- $f \in L^{\infty}(\Omega) \cap C(\Omega)$;
- $u \ge 0$ in Ω ;
- $\Omega^+(u) := \{x \in \Omega : u(x) > 0\};$
- $\mathfrak{F}(u) := \partial \Omega^+(u) \cap \Omega$.

• In a first moment, we establish optimal Lipschitz regularity to viscosity solutions;

- In a first moment, we establish optimal Lipschitz regularity to viscosity solutions;
- We prove the non-degeneracy of solutions;

- In a first moment, we establish optimal Lipschitz regularity to viscosity solutions;
- We prove the non-degeneracy of solutions;
- The next step is to investigate the regularity of the free boundary $\mathfrak{F}(u)$. We prove that flat free boundaries are of class $\mathcal{C}^{1,\beta}$;

- In a first moment, we establish optimal Lipschitz regularity to viscosity solutions;
- We prove the non-degeneracy of solutions;
- The next step is to investigate the regularity of the free boundary $\mathfrak{F}(u)$. We prove that flat free boundaries are of class $\mathcal{C}^{1,\beta}$;
- Finally, we prove that Lipschitz free boundaries are os class $\mathcal{C}^{1,\beta}.$

One of the main signatures of this model is its interplay between two different kinds of degeneracy laws, in accordance with the values of the modulating function \mathfrak{a} .

$$\Omega \times \mathbb{R}^n \ni (x,\xi) \mapsto \mathcal{H}(x,\xi) \propto |\xi|^p + \mathfrak{a}(x)|\xi|^q \quad 0 and $0 \le \mathfrak{a} \in C^0(\Omega)$.$$

4

For related regularity estimates and free boundary problems driven by second order operators with a single degeneracy law:

- Araújo, Ricarte, Teixeira (Calc. Var. PDE 2015), (Ann. Inst. H. Poincaré Anal. Non Linéaire - 2017);
- Birindelli, Demengel (ESAIM Control Optim. Calc. Var. -2014);
- Birindelli, Demengel, Leoni (NoDEA 2019);
- Da Silva, Leitão, Ricarte (Math. Nachr. 2021);
- Da Silva, Vivas (Rev. Mat. Iberoam. 2021), (Discrete and Continuous Dynamical Systems, 2021);
- Imbert, Silvestre (Adv. Math. 2012), (JEMS 2016).

The model in (1) can be considered the non-divergence form of certain variational integrals from the Calculus of Variations with double phase structure:

$$(w, f) \mapsto \min \int_{\Omega} \left(\frac{1}{p} |\nabla w|^p + \frac{\mathfrak{a}(x)}{q} |\nabla w|^q - fw \right) dx,$$

where $(w, f) \in (W_0^{1,p}(\Omega) + u_0, L^m(\Omega))$, $\mathfrak{a} \in C^{0,\alpha}(\Omega, [0,\infty))$, for some $0 < \alpha \le 1$, $1 and <math>m \in (n,\infty]$;

6

The model in (1) can be considered the non-divergence form of certain variational integrals from the Calculus of Variations with double phase structure:

$$(w, f) \mapsto \min \int_{\Omega} \left(\frac{1}{\rho} |\nabla w|^{\rho} + \frac{\mathfrak{a}(x)}{q} |\nabla w|^{q} - fw \right) dx,$$

where $(w, f) \in (W_0^{1,p}(\Omega) + u_0, L^m(\Omega))$, $\mathfrak{a} \in C^{0,\alpha}(\Omega, [0,\infty))$, for some $0 < \alpha \le 1$, $1 and <math>m \in (n,\infty]$;

- Colombo, Mingione (Arch. Rational Mech. Anal. 2015);
- Baroni, Colombo, Mingione (Calc. Var. PDE 2018);
- De Filippis (JDE 2019);
- De Filippis, Mingione (The Journal of Geometric Analysis -2020).

Historically the mathematical investigation of the regularity of the free boundary $\mathfrak{F}(u)$ in problems like (1) has a large literature and it has presented wide advances in the last three decades or so.

Uniform Elliptic case - Variational approach.

The case f=0 and $\mathcal{H}(x,\xi)=1$, was studied by minimizing

$$\mathcal{J}(u) := \int_{\Omega \cap \{u>0\}} f(x, u(x), \nabla u(x)) dx \longrightarrow \min,$$

where was proved existence of a minimum and regularity of the free boundary via blow-up techniques, or via singular perturbation methods for the problem $\Delta u_{\varepsilon} = \beta_{\varepsilon}(u_{\varepsilon})$.

- Alt, Caffarelli (J. Reine Angew. Math. 1981);
- Caffarelli (Rev. Mat. Iber. 1987), (Comm. Pure Appl. Math. - 1989).

8

Degenerate cases - Variational approach.

 Danielli, Petrosyan - (Calc. Var. PDE - 2005) established the regularity near "flat points" of the free boundary of non-negative solutions to the minimization problem

$$\min \mathcal{J}_p(u)$$
 with $\mathcal{J}_p(u) := \int_{\Omega} \left(|\nabla u|^p + \lambda_0^p \chi_{\{u>0\}} \right) dx,$

which is governed by the *p*-Laplacian operator, for f=0, $1 and <math>\lambda > 0$.

C

 Martínez, Wolanski - (Adv. Math. - 2008) study the optimization problem of minimizing

$$\min \mathcal{J}_{\mathrm{G}}(u) \qquad \text{with} \qquad \mathcal{J}_{\mathrm{G}}(u) := \int_{\Omega} \left(\mathrm{G}(|\nabla u|) + \lambda_0 \chi_{\{u>0\}} \right) dx,$$

in an Orlicz-Sobolev scenario, thereby extending the Alt-Caffarelli's theory.

The study of existing, Lipschitz regularity and regularity of the free boundary for homogeneous/inhomogeneous free boundary problems driven by p(x)-Laplacian type operators as follows

$$\begin{cases} \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) &= f(x) & \text{in} \quad \Omega_{+}(u), \\ |\nabla u| &= \lambda^{*}(x) & \text{on} \quad \mathfrak{F}(u). \end{cases}$$

can be found

- Fernández Bonder, Martínez, Wolanski (Nonlinear Anal. -2010;
- Lederman, Wolanski (Interfaces Free Bound., 2017), (J. Math. Anal. Appl., 2019), (Math. Eng., 2021).

Uniform elliptic case - Non-variational approach.

• Feldman - (Indiana Univ. Math. J. - 2001)

For the context of fully non-linear elliptic equations, the homogeneous problem, i.e. f=0 (with $\mathcal{H}(x,\xi)\equiv 1$).

Uniform elliptic case - Non-variational approach.

• Feldman - (Indiana Univ. Math. J. - 2001)

For the context of fully non-linear elliptic equations, the homogeneous problem, i.e. f=0 (with $\mathcal{H}(x,\xi)\equiv 1$).

- De Silva (Interfaces Free Bound. 2011);
- De Silva, Ferrari, Salsa (J. Math. Pures Appl. 2015).

For the non-homogeneous case, $f \neq 0$ (with $\mathcal{H}(x,\xi) \equiv 1$), in the one and two-phase scenarios, respectively.

In turn, the FBP considered in (1) also appears as the limit of certain inhomogeneous singularly perturbed problems in the non-variational context of high energy activation model in combustion and flame propagation theories.

- Araújo, Ricarte, Teixeira (Ann. Inst. H. Poincaré Anal. Non Linéaire - 2017);
- Ricarte, Silva (Interfaces and Free Bound. 2015);
- Ricarte, Teixeira (J. Funct. Anal. 2011).

The simplest mathematical model (in this case) is given by: for each $\varepsilon>0$ fixed, we seek a non-negative profile u^ε satisfying

$$\begin{cases} [|\nabla u^{\varepsilon}|^{p} + \mathfrak{a}(x)|\nabla u^{\varepsilon}|^{q}] \Delta u^{\varepsilon} &= \frac{1}{\varepsilon}\beta\left(\frac{u^{\varepsilon}}{\varepsilon}\right) + f_{\varepsilon}(x) & \text{in} \quad \Omega, \\ u^{\varepsilon}(x) &= g(x) & \text{on} \quad \partial\Omega, \end{cases}$$

in the viscosity sense for suitable data $p,q\in(0,\infty)$, $\mathfrak a,g$, where β_{ε} behaves singularly of order o (ε^{-1}) near ε -level surfaces. In such a scenario, existing solutions are locally (uniformly) Lipschitz continuous.

• da Silva, Júnior, Ricarte - (Rev. Mat. Iberoam. - 2022)

Assumptions

Viscosity Solutions

Definition

Let $u \in C(\Omega)$ nonnegative. We say that u is a viscosity supersolution (resp.subsolution) to

$$\begin{cases} \mathcal{H}(x,\nabla u)F(x,D^2u) &= f(x) & \text{in} \quad \Omega_+(u), \\ |\nabla u| &= Q(x) & \text{on} \quad \mathfrak{F}(u). \end{cases}$$

if and only if the following conditions are satisfied:

(F1) If $\phi \in C^2(\Omega^+(u))$ touches u by below (resp. above) at $x_0 \in \Omega^+(u)$ then

$$\mathcal{H}(x_0, \nabla \phi(x_0)) F(x_0, D^2 \phi(x_0)) \le f(x_0)$$

(resp.
$$\mathcal{H}(x_0, \nabla \phi(x_0)) F(x_0, D^2 \phi(x_0) \geq f(x_0))$$
.

(F2) If $\phi \in C^2(\Omega)$ and ϕ touches u below (resp. above) at $x_0 \in \mathfrak{F}(u)$ and $|\nabla \phi|(x_0) \neq 0$ then

$$|\nabla \phi|(x_0) \leq Q(x_0)$$
 $(resp. |\nabla \phi|(x_0) \geq Q(x_0)).$

We say that u is a viscosity solution if it is a viscosity supersolution and a viscosity subsolution.

Continuity and normalization condition

We suppose that

$$\Omega \ni x \mapsto F(x,\cdot) \in C^0(\operatorname{Sym}(n))$$
 and $F(\cdot, O_n) = 0$ where O_n is the zero matrix.

This normalizing assumption can be impose without loss of generality.

Uniform ellipticity

For any pair of matrices $X, Y \in Sym(n)$

$$\mathcal{P}_{\lambda,\Lambda}^{-}(X-Y) \le F(x,X) - F(x,Y) \le \mathcal{P}_{\lambda,\Lambda}^{+}(X-Y)$$

where $\mathcal{P}_{\lambda,\Lambda}^{\pm}$ stand for *Pucci's extremal operators* given by

$$\mathcal{P}_{\lambda,\Lambda}^{-}(X) := \lambda \sum_{e_i > 0} e_i(X) + \Lambda \sum_{e_i < 0} e_i(X)$$

$$\quad \text{and} \quad \mathcal{P}^+_{\lambda,\Lambda}(X) := \Lambda \sum_{e_i > 0} e_i(\mathrm{X}) + \lambda \sum_{e_i < 0} e_i(\mathrm{X})$$

for ellipticity constants $0 < \lambda \le \Lambda < \infty$, where $\{e_i(X)\}_i$ are the eigenvalues of X.

ω -continuity of coefficients

There exist a uniform modulus of continuity $\omega:[0,\infty)\to[0,\infty)$ and a constant $C_F>0$ such that

$$\Omega\ni x,x_0\mapsto \Theta_{\mathrm{F}}\big(x,x_0\big):=\sup_{X\in Sym(n)\atop X\neq 0}\frac{|F(x,\mathrm{X})-F(x_0,\mathrm{X})|}{\|\mathrm{X}\|}\leq \mathrm{C_F}\omega\big(|x-x_0|\big),$$

which measures the oscillation of coefficients of F around x_0 . Finally, we define

$$\|F\|_{C^{\omega}(\Omega)}:=\inf\left\{\mathrm{C}_{\mathrm{F}}>0:\frac{\Theta_{\mathrm{F}}\big(x,x_0\big)}{\omega(|x-x_0|)}\leq\mathrm{C}_{\mathrm{F}},\ \forall\ x,x_0\in\Omega,\ x\neq x_0\right\}.$$

In our studies, the diffusion properties of the model (1) degenerate along an *a priori* unknown set of singular points of existing solutions:

$$\mathcal{S}(u,\Omega) := \{x \in \Omega : |\nabla u(x)| = 0\}.$$

In our studies, the diffusion properties of the model (1) degenerate along an *a priori* unknown set of singular points of existing solutions:

$$\mathcal{S}(u,\Omega) := \{ x \in \Omega : |\nabla u(x)| = 0 \}.$$

For this reason, we will enforce that $\mathcal{H}:\Omega\times\mathbb{R}^n\to[0,\infty)$ behaves as

$$L_1 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) \leq \mathcal{H}(x,\xi) \leq L_2 \cdot \mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|)$$

$$\mathcal{K}_{p,q,\mathfrak{a}}(x,|\xi|) := |\xi|^p + \mathfrak{a}(x)|\xi|^q, \text{ for } (x,\xi) \in \Omega \times \mathbb{R}^n.$$

In addition, we suppose that the exponents p,q and the modulating function $\mathfrak{a}(\cdot)$ fulfil

$$0 and $\mathfrak{a} \in C^0(\Omega, [0, \infty)).$$$

In addition, we suppose that the exponents p,q and the modulating function $\mathfrak{a}(\cdot)$ fulfil

$$0 and $\mathfrak{a} \in C^0(\Omega, [0, \infty)).$$$

Finally, we will assume the following condition: there exist a universal constant $C_{\mathfrak{a}}>0$ and a modulus of continuity $\omega_{\mathfrak{a}}:[0,\infty)\to[0,\infty)$ such that

$$|\mathcal{H}(x,\xi) - \mathcal{H}(y,\xi)| \leq \mathrm{C}_{\mathfrak{a}} \omega_{\mathfrak{a}}(|x-y|) |\xi|^q, \quad \forall \ (x,y,\xi) \in \Omega \times \Omega \times \mathbb{R}^n.$$

Optimal Lipschitz Regularity

Lipschitz regularity of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J. Math.)

Let $Q \in C^0(B_1; [0, \infty)) \cap L^\infty(B_1; [0, \infty))$ and u be a bounded viscosity solution to (1) in B_1 . Then, there exists a universal constant $C_1 = C_1(n, \lambda, \Lambda, \mathfrak{a}, L_1, p, q) > 0$ such that

$$\textit{u}(\textit{x}_0) \leq C_1. \left(\|\textit{u}\|_{\textit{L}^{\infty}(\textit{B}_1)} + \|\textit{Q}\|_{\textit{L}^{\infty}(\textit{B}_1)} + \max \left\{ \|f\|_{\textit{L}^{\infty}(\textit{B}_1)}^{\frac{1}{p+1}}, \|f\|_{\textit{L}^{\infty}(\textit{B}_1)}^{\frac{1}{q+1}} \right\} \right) \textit{dist}(\textit{x}_0, \mathfrak{F}(\textit{u})),$$

for all $x_0 \in B_{1/2}$; i.e., solutions have at most linear behavior close to free boundary points. Particularly, there exists $C_2 = C_2(n, \lambda, \Lambda, L_1, p, q, \|F\|_{\mathcal{C}^\omega}) > 0$ such that

$$\|\nabla u\|_{L^{\infty}(\mathcal{B}_{1/2})} \leq \mathrm{C}_{2}.\left(\|u\|_{L^{\infty}(\mathcal{B}_{1})} + \|\mathrm{Q}\|_{L^{\infty}(\mathcal{B}_{1})} + \max\left\{\|f\|_{L^{\infty}(\mathcal{B}_{1})}^{\frac{1}{p+1}}, \|f\|_{L^{\infty}(\mathcal{B}_{1})}^{\frac{1}{q+1}}\right\} + 1\right).$$

The proof of the Lipschitz regularity can be obtained employing some ideas performed for the scenario of singularly perturbed FBPs.

- Araújo, Ricarte, Teixeira (Ann. Inst. H. Poincaré Anal. Non Linéaire - 2017);
- da Silva, Júnior, Ricarte (Rev. Mat. Iberoam. 2022);
- Ricarte, Silva (Interfaces and Free Bound., 2015);
- Ricarte, Silva, Teymurazyan (JDE 2017);
- Ricarte, Teixeira (J. Funct. Anal. 2011).

Sketch of the proof:

• Take $x_0 \in B_{1/2}$ such that $x_0 \in B_{1/2}^+(u)$. We suppose that $\operatorname{dist}(x_0, \mathfrak{F}(u)) \leq 1/2$ and consider the scaled funtion

$$v_{x_0,d_0}(x) := \frac{u(x_0 + rd_0x)}{\operatorname{dist}(x_0, \mathfrak{F}(u))}$$

for 0 < r < 1 to be chosen.

Sketch of the proof:

• Take $x_0 \in B_{1/2}$ such that $x_0 \in B_{1/2}^+(u)$. We suppose that $\operatorname{dist}(x_0, \mathfrak{F}(u)) \leq 1/2$ and consider the scaled funtion

$$v_{\mathsf{x}_0,d_0}(x) := \frac{u(\mathsf{x}_0 + rd_0x)}{\mathsf{dist}(\mathsf{x}_0,\mathfrak{F}(u))}$$

for 0 < r < 1 to be chosen.

 The idea is to prove that v_{x0,d0}(0) ≤ C₀ for some universal constant C₀ > 0. • v_{x_0,d_0} is a non-negative viscosity solution of

$$\mathcal{H}_{x_0,d_0}(x,\nabla v_{x_0,d_0})F_{x_0,d_0}(x,D^2v_{x_0,d_0})=f_{x_0,d_0}(x)$$
 in B_1

where

$$\begin{cases} F_{x_0,d_0}(x,X) &:= r^2 d_0 F\left(x_0 + r d_0 x, \frac{1}{r^2 d_0} X\right) \\ \mathcal{H}_{x_0,d_0}(x,\xi) &:= r^p \mathcal{H}\left(x_0 + r d_0 x, \frac{1}{r} \xi\right) \\ \mathfrak{a}_{x_0,d_0}(x) &:= r^{p-q} \mathfrak{a}(x_0 + r d_0 x) \\ f_{x_0,d_0}(x) &:= r^{p+2} d_0 f(x_0 + r d_0 x) \\ Q_{x_0,d_0}(x) &:= r Q(x_0 + r d_0 x) \end{cases}$$

where F_{x_0,d_0} , \mathcal{H}_{x_0,d_0} and \mathfrak{a}_{x_0,d_0} satisfy the structural assumptions.

• Consider the annulus $\mathcal{A}_{\frac{1}{2},1}:=B_1\setminus B_{\frac{1}{2}}$ and the barrier function $\Phi:\overline{\mathcal{A}_{\frac{1}{2},1}}\to\mathbb{R}_+$ given by

$$\Phi(x) = \mu_0 \cdot \left(e^{-\delta|x|^2} - e^{-\delta} \right)$$

where $\mu_0, \delta > 0$ will be chosen.

• Consider the annulus $\mathcal{A}_{\frac{1}{2},1}:=B_1\setminus B_{\frac{1}{2}}$ and the barrier function $\Phi:\overline{\mathcal{A}_{\frac{1}{2},1}}\to\mathbb{R}_+$ given by

$$\Phi(x) = \mu_0 \cdot \left(e^{-\delta|x|^2} - e^{-\delta} \right)$$

where $\mu_0, \delta > 0$ will be chosen.

• We show that Φ is a strict viscosity subsolution to

$$\mathcal{H}_{x_0,d_0}(x,\nabla\Phi)F_{x_0,d_0}(x,D^2\Phi) = f_{x_0,d_0}(x)$$
 in $\mathcal{A}_{\frac{1}{2},1}$

provided we may adjust appropriately the values of $\mu_0, \delta > 0$ and r > 0.

• Choose $\mu_0:=(e^{-\delta/4}-e^{-\delta})^{-1}\cdot\inf_{\partial B_{\frac{1}{2}}}v_{x_0,d_0}(x)>0.$ It follows that

$$\Phi(x) \leq v_{x_0,d_0}(x)$$
 on $\partial \mathcal{A}_{\frac{1}{2},1}$.

• Choose $\mu_0:=(e^{-\delta/4}-e^{-\delta})^{-1}\cdot\inf_{\partial B_{\frac{1}{2}}}v_{x_0,d_0}(x)>0.$ It follows that

$$\Phi(x) \le v_{x_0,d_0}(x)$$
 on $\partial \mathcal{A}_{\frac{1}{2},1}$.

• From the Comparison Principle, we can conclude that

$$\Phi(x) \le v_{x_0,d_0}(x) \quad \text{in} \quad \mathcal{A}_{\frac{1}{2},1}.$$

• Choose $\mu_0:=(e^{-\delta/4}-e^{-\delta})^{-1}\cdot\inf_{\partial B_{\frac{1}{2}}}v_{x_0,d_0}(x)>0.$ It follows that

$$\Phi(x) \leq v_{x_0,d_0}(x)$$
 on $\partial \mathcal{A}_{\frac{1}{2},1}$.

From the Comparison Principle, we can conclude that

$$\Phi(x) \le v_{x_0,d_0}(x) \quad \text{in} \quad \mathcal{A}_{\frac{1}{2},1}.$$

• Let $z_0 \in \mathfrak{F}(v_{x_0,d_0})$ be a point that achieves the distance, i.e., $rd_0 = |x_0 - z_0|$ and consider $y_0 := \frac{z_0 - x_0}{rd_0} \in \partial B_1$.

• Taking into account the free boundary condition, we obtain concerning the normal derivatives in the direction ν at x_0 the following

$$\mu_0 \delta e^{-\delta} \leq \frac{\partial \Phi(y_0)}{\partial \nu} \leq \|\mathbf{Q}\|_{L^{\infty}(B_1)},$$

which implies that

$$\inf_{\partial B_{\frac{1}{2}}} v_{x_0,d_0}(x) \leq \|\mathbf{Q}\|_{L^{\infty}(B_1)} \mathbf{C}(\delta).$$

• By invoking the Harnack inequality and the definition of v_{x_0,d_0} , it follows that

$$\sup_{\substack{B \\ \frac{rd_0}{2}}(\mathbf{x}_0)} u(\mathbf{x}) \leq \mathbf{C}_0 d_0 \cdot \left\{ \|\mathbf{Q}\|_{L^{\infty}(B_1)} + \max \left\{ \left(r^{p+2} d_0\right)^{\frac{1}{p+1}}, \left(r^{p+2} d_0\right)^{\frac{1}{q+1}} \right\} \Pi_{p,q}^{f,\, \mathfrak{a}_{\mathbf{x}_0}, d_0} \right\}.$$

• By invoking the Harnack inequality and the definition of v_{x_0,d_0} , it follows that

$$\sup_{\substack{B \\ \frac{rd_0}{2}}(x_0)} u(x) \leq C_0 d_0 \cdot \left\{ \|\mathbf{Q}\|_{L^{\infty}(B_1)} + \max \left\{ \left(r^{p+2} d_0\right)^{\frac{1}{p+1}}, \left(r^{p+2} d_0\right)^{\frac{1}{q+1}} \right\} \Pi_{p,q}^{f,\, \alpha_{x_0}, d_0} \right\}.$$

• By $\mathcal{C}_{loc}^{1,\beta}$ -estimates we have

$$|\nabla u(x_0)| \leq \mathrm{C} \cdot \left(\|v_{x_0,d_0}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} + 1 + \|f_{x_0,d_0}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)}^{\frac{1}{p+1}} \right).$$

Non-degeneracy of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J. Math.)

Let $Q \in C^0(B_1; [0, \infty)) \cap L^\infty(B_1; [0, \infty))$ and u be a bounded viscosity solution to (1) in B_1 . Further, suppose that $\mathfrak{F}(u)$ is a Lipschitz graph in B_1 with $\mathfrak{F}(u) \cap B_{1/2}^+(u) \neq \emptyset$. There exists a universal $\eta_0 \in (0, 1)$ and a universal constant $C_* = C(n, \lambda, \Lambda, p, q, \|F\|_{C^\omega(B_1)}) > 0$ such that if

$$\|\mathbf{Q} - \mathbf{1}\|_{L^{\infty}(B_1)} < \eta_0$$

then

$$u(x_0) \geq \mathrm{C}_*.dist(x_0,\mathfrak{F}(u)),$$

for all $x_0 \in B_{1/2}^+(u)$; i.e. solutions growth at least in a linear fashion close to free boundary points.

For the proof of the non-degeneracy result, the argument follows as the one in [De Silva - Interfaces Free Bound., 2011], after constructing the appropriate barrier.

For the proof of the non-degeneracy result, the argument follows as the one in [De Silva - Interfaces Free Bound., 2011], after constructing the appropriate barrier. We use the same idea as in the proof of Lipschitz continuity; but here we need to prove that $v_{x_0,d_0}(0) \geq C_*$; using the Harnack inequality and the Lipschitz continuity.

Free Boundary Regularity

Flatness implies $C^{1,\beta}$

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J. Math.)

Let u be a viscosity solution to (1) in B_1 . Suppose that $0 \in \mathfrak{F}(u)$, Q(0) = 1 and F(0,X) is uniformly elliptic. Then, there exists a universal constant $\tilde{\varepsilon} > 0$ such that, if the graph of u is $\tilde{\varepsilon}$ -flat in B_1 , i.e.

$$(x_n - \tilde{\varepsilon})^+ \le u(x) \le (x_n + \tilde{\varepsilon})^+$$
 for $x \in B_1$,

and

$$\max\left\{\|f\|_{L^{\infty}(B_1)},\ [\mathbf{Q}]_{C^{0,\alpha}(B_1)},\|F\|_{C^{\omega}(B_1)}\right\}\leq \tilde{\varepsilon},$$

then $\mathfrak{F}(u)$ is $C^{1,\beta}$ in $B_{1/2}$ for some (universal) $\beta \in (0,1)$.

The proof of the previous theorem is based on an *improvement of flatness* property for the graph of a solution u: if the graph of u oscillates away ε from a hyperplane in B_1 then in B_{δ_0} it oscillates $\frac{\delta_0\varepsilon}{2}$ away from possibly a different hyperplane.

The proof of the previous theorem is based on an *improvement of flatness* property for the graph of a solution u: if the graph of u oscillates away ε from a hyperplane in B_1 then in B_{δ_0} it oscillates $\frac{\delta_0 \varepsilon}{2}$ away from possibly a different hyperplane. The fundamental tools to achieve this property are a Harnack type inequality and characterizing of limiting solutions.

• De Silva - (Interfaces Free Bound. - 2011)

In the proof of the Harnack inequality we have some difficulties to overcome, since the structure of the operator $\mathcal{G}_{p,q}[u] := \mathcal{H}(x,\nabla u)F(x,D^2u) \text{ requires some non-trivial adaptations.}$

In the proof of the Harnack inequality we have some difficulties to overcome, since the structure of the operator $\mathcal{G}_{p,q}[u] := \mathcal{H}(x,\nabla u)F(x,D^2u) \text{ requires some non-trivial adaptations. In fact, if ℓ is an affine function and u is a solution to the problem$

$$\mathcal{H}(x, \nabla u)F(x, D^2u) = f(x) \quad \text{in } B_r(x_0), \quad \text{where } x_0 = \frac{e_n}{10}, \quad (2)$$

we can not conclude that $u+\ell$ is a solution to the equation (2) yet. In contrast, for p=q=0 we know $u+\ell$ is still solution for (2). In effect, De Silva have used this fact, thereby allowing us to apply the Harnack inequality for $v(x)=u(x)-x_n$, which plays a crucial role in reaching an *improvement of flatness* for the graph of u.

Lemma (Improvement of flatness)

Let u be a viscosity solution to (1) in Ω under assumptions

$$||f||_{L^{\infty}(\Omega)} \le \varepsilon^2$$
 and $||Q-1||_{L^{\infty}(\Omega)} \le \varepsilon^2$

with $0 \in \mathfrak{F}(u)$ and assume it satisfies

$$(x_n - \varepsilon)^+ \le u(x) \le (x_n + \varepsilon)^+$$
 for $x \in B_1$.

Then there exists a universal constant $r_0 > 0$ such that if $0 < r \le r_0$ and $0 < \varepsilon \le \varepsilon_0$ (with ε_0 depending on r), then

$$\left(\langle x,\nu\rangle-r\frac{\varepsilon}{2}\right)^+\leq u(x)\leq \left(\langle x,\nu\rangle+r\frac{\varepsilon}{2}\right)^+\quad x\in B_r,$$

for some $\nu \in \mathbb{S}^{n-1}$ (unity sphere) and $|\nu - e_n| \le C\varepsilon^2$ for a universal constant C > 0.

Sketch of the proof (Flatness implies $C^{1,\beta}$):

Let u be a viscosity solution to the free boundary problem

$$\begin{cases} \mathcal{H}(x, \nabla u) F(x, D^2 u) &= f(x) & \text{in} \quad B_1^+(u), \\ |\nabla u| &= Q(x) & \text{on} \quad \mathfrak{F}(u) \end{cases}$$

with
$$0 \in \mathfrak{F}(u)$$
 and $Q(0) = 1$.

Sketch of the proof (Flatness implies $C^{1,\beta}$):

Let u be a viscosity solution to the free boundary problem

$$\begin{cases} \mathcal{H}(x, \nabla u) F(x, D^2 u) &= f(x) & \text{in} \quad B_1^+(u), \\ |\nabla u| &= Q(x) & \text{on} \quad \mathfrak{F}(u) \end{cases}$$

with $0 \in \mathfrak{F}(u)$ and Q(0) = 1.

Assume further that

$$(x_n - \tilde{\varepsilon})^+ \le u(x) \le (x_n + \tilde{\varepsilon})^+$$
 for $x \in B_1$,

and

$$\max\left\{\|f\|_{L^{\infty}(B_1)},\ \left[\mathbf{Q}\right]_{C^{0,\alpha}(B_1)},\|F\|_{C^{\omega}(B_1)}\right\}\leq \tilde{\varepsilon},$$

with $\tilde{\varepsilon} > 0$ to be fixed.

• Fix $\bar{r} > 0$ a universal constant such that

$$\overline{r} \leq \min \left\{ r_0, \ \left(\frac{1}{4}\right)^{\frac{1}{\alpha}} \right\},$$

where r_0 comes from the improvement of flatness Lemma. After chosen \overline{r} , let $\varepsilon_0 := \varepsilon_0(\overline{r})$ be the constant given by improvement of flatness Lemma.

• Fix $\bar{r} > 0$ a universal constant such that

$$\overline{r} \leq \min \left\{ r_0, \ \left(\frac{1}{4}\right)^{\frac{1}{\alpha}} \right\},$$

where r_0 comes from the improvement of flatness Lemma. After chosen \overline{r} , let $\varepsilon_0 := \varepsilon_0(\overline{r})$ be the constant given by improvement of flatness Lemma.

Let

$$\tilde{\varepsilon} := \varepsilon_0^2$$
 and $\varepsilon_k := 2^{-k} \varepsilon_0$.

• Fix $\bar{r} > 0$ a universal constant such that

$$\overline{r} \leq \min \left\{ r_0, \ \left(\frac{1}{4}\right)^{\frac{1}{\alpha}} \right\},$$

where r_0 comes from the improvement of flatness Lemma. After chosen \overline{r} , let $\varepsilon_0 := \varepsilon_0(\overline{r})$ be the constant given by improvement of flatness Lemma.

Let

$$\tilde{\varepsilon} := \varepsilon_0^2$$
 and $\varepsilon_k := 2^{-k} \varepsilon_0$.

• The choice of $\tilde{\varepsilon}$ ensures that

$$(x_n - \varepsilon_0)^+ \le u(x) \le (x_n + \varepsilon_0)^+$$
 in B_1 .

which implies by the improvement of flatness Lemma that there exists ν_1 with $|\nu_1|=1$ and $|\nu_1-e_n|\leq C\varepsilon_0^2$ such that

$$\left(\langle x,\nu_1\rangle - \bar{r}\frac{\varepsilon_0}{2}\right)^+ \leq u(x) \leq \left(\langle x,\nu_1\rangle + \bar{r}\frac{\varepsilon_0}{2}\right)^+ \quad \text{in} \quad B_{\bar{r}}.$$

ullet Now, consider the sequence of re-scaling profiles $u_k: B_1
ightarrow \mathbb{R}$ given by

$$u_k(x) := \frac{u(\lambda_k x)}{\lambda_k}$$

with $\lambda_k = \overline{r}^k$, k = 0, 1, 2, ..., for a fixed \overline{r} as previously.

• Now, consider the sequence of re-scaling profiles $u_k: B_1 \to \mathbb{R}$ given by

$$u_k(x) := \frac{u(\lambda_k x)}{\lambda_k}$$

with $\lambda_k = \overline{r}^k$, $k = 0, 1, 2, \ldots$, for a fixed \overline{r} as previously.

 u_k fulfils in the viscosity sense the following free boundary problem

$$\begin{cases}
\mathcal{H}(\lambda_k x, \nabla u_k) F_k(x, D^2 u_k) &= f_k(x) & \text{in} \quad B_1^+(u_k), \\
|\nabla u_k| &= Q_k & \text{on} \quad \mathfrak{F}(u_k),
\end{cases}$$

where

$$\begin{cases}
F_{x}(x, X) &:= \lambda_{k} F\left(\lambda_{k} x, \lambda_{k}^{-1} X\right) \\
\mathcal{H}_{k}(x, \xi) &:= \mathcal{H}\left(\lambda_{k} x, \xi\right) \\
\mathfrak{a}_{k}(x) &:= \mathfrak{a}(\lambda_{k} x) \\
f_{k}(x) &:= \lambda_{k} f(\lambda_{k} x) \\
Q_{k}(x) &:= Q(\lambda_{k} x).
\end{cases}$$

where F_k , \mathcal{H}_k and \mathfrak{a}_k satisfy the structural assumptions.

• We prove that in B_1 we have

$$|f_k(x)| \le \varepsilon_k^2$$
 and $|Q_k(x) - 1| \le \varepsilon_k^2$.

• We prove that in B_1 we have

$$|f_k(x)| \le \varepsilon_k^2$$
 and $|Q_k(x) - 1| \le \varepsilon_k^2$.

We iterate the above argument and obtain that

$$(\langle x, \nu_k \rangle - \varepsilon_k)^+ \le u_k(x) \le (\langle x, \nu_k \rangle + \varepsilon_k)^+ \quad \text{in} \quad B_1,$$

with $|\nu_k| = 1$, $|\nu_k - \nu_{k+1}| \le C\varepsilon_k$ (with $\nu_0 = e_n$).

Therefore

$$\left(\langle x, \nu_k \rangle - \frac{\varepsilon_0}{2^k} \overline{r}^k \right)^+ \le u(x) \le \left(\langle x, \nu_k \rangle + \frac{\varepsilon_0}{2^k} \overline{r}^k \right)^+ \quad \text{in} \quad B_{\overline{r}^k} \quad (3)$$

with

$$|\nu_{k+1} - \nu_k| \le C \frac{\varepsilon_0}{2^k}.$$

Therefore

$$\left(\langle x, \nu_k \rangle - \frac{\varepsilon_0}{2^k} \overline{r}^k \right)^+ \le u(x) \le \left(\langle x, \nu_k \rangle + \frac{\varepsilon_0}{2^k} \overline{r}^k \right)^+ \quad \text{in} \quad B_{\overline{r}^k} \quad (3)$$

with

$$|\nu_{k+1} - \nu_k| \le C \frac{\varepsilon_0}{2^k}.$$

• Furthermore, (3) implies that

$$\partial\{u>0\}\cap B_{\overline{r}^k}\subset \left\{|\langle x,\nu_k\rangle|\leq \frac{\varepsilon_0}{2^k}\overline{r}^k\right\},\,$$

which implies that $B_{3/4} \cap \mathfrak{F}(u)$ is a $C^{1,\beta}$ graph.

Lipschitz implies $C^{1,\beta}$

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J. Math.) Let u be a viscosity solution for the free boundary problem (1). Assume further that $0 \in \mathfrak{F}(u)$, $f \in L^{\infty}(B_1)$ is continuous in $B_1^+(u)$ and Q(0) > 0. If $\mathfrak{F}(u)$ is a Lipschitz graph in a neighborhood of 0, then $\mathfrak{F}(u)$ is $C^{1,\beta}$ in a (smaller) neighborhood of 0.

Comments about the proof:

We use a blow-up argument from the previous theorem and the approach used in [Caffarelli - Rev. Mat. Iberoamericana, 1987]:

Comments about the proof:

We use a blow-up argument from the previous theorem and the approach used in [Caffarelli - Rev. Mat. Iberoamericana, 1987]:

• We consider the re-scaled functions

$$u_k(x) := u_{\delta_k}(x) = \frac{u(\delta_k x)}{\delta_k},$$

with $\delta_k \to 0$ as $k \to \infty$;

• Because of the non-degeneracy and the Lipschitz continuity for u_k 's, $u_k \to u_\infty$ uniformly on compact sets. Then, we can prove that u_∞ solves

$$\begin{cases} F_{\infty}(D^2u_{\infty}) = 0 & \text{in } \{u_{\infty} > 0\}, \\ |\nabla u_{\infty}| = 1 & \text{on } \mathfrak{F}(u_{\infty}), \end{cases}$$

with $\mathfrak{F}(u_{\infty})$ Lipschitz continuous (via compactness lemma and cutting lemma).

• Also, we can prove that u_{∞} is a one-phase solution, i.e. up to rotations,

$$u_{\infty}(x)=x_n^+;$$

 \bullet Also, we can prove that u_{∞} is a one-phase solution, i.e. up to rotations,

$$u_{\infty}(x)=x_n^+;$$

• Thus, for *k* large enough we have

$$||u_k - u_\infty||_{L^\infty(B_1)} \leq \tilde{\varepsilon},$$

where $\tilde{\varepsilon}$ comes from the previous lemma;

• Also, we can prove that u_{∞} is a one-phase solution, i.e. up to rotations,

$$u_{\infty}(x)=x_n^+;$$

• Thus, for k large enough we have

$$||u_k - u_\infty||_{L^\infty(B_1)} \leq \tilde{\varepsilon},$$

where $\tilde{\varepsilon}$ comes from the previous lemma;

• Therefore, u_k fulfils $\tilde{\varepsilon}$ -flat in B_1 , which implies that $\mathfrak{F}(u_k)$ is a graph $C^{1,\beta}$ and consequently $\mathfrak{F}(u)$ are $C^{1,\beta}$, for some $\beta \in (0,1)$.

Some extensions

We can extend our results for nonlinear elliptic equations with non-homogeneous term as follows.

We can extend our results for nonlinear elliptic equations with non-homogeneous term as follows.

• Multi degenerate operators in non-divergence form.

An extension of our results holds to general multi-degenerate fully nonlinear models given by

$$\mathcal{G}(x,Du,D^2u):=\left(|Du|^p+\sum_{i=1}^N\mathfrak{a}_i(x)|Du|^{q_i}\right)F(x,D^2u),$$

where $0 \le \mathfrak{a}_i \in C^0(\Omega)$, $i \in \{1, \cdots, N\}$, and 0 , which are a natural non-variational counterpart of certain multi-phase variational problems treated in [De Filippis, Oh - J. Differential Equations, 2019].

• Doubly degenerate (p, q)-Laplacian in non-divergence form.

Other interesting class of degenerate operators where our results work out is the double degenerate p-Laplacian type operators, in non-divergence form, for $2 < p_0 \le q_0 < \infty$ and 1 :

$$G_{p_0,q_0}(x,\xi,X) = \mathcal{H}_{p_0,q_0}(x,\xi)F_p(\xi,X)$$

where

$$\mathcal{H}_{p_0,q_0}(x,\xi) := |\xi|^{p_0-2} + \mathfrak{a}(x)|\xi|^{q_0-2}$$

and

$$F_p(\xi,X) := \operatorname{Tr}\left[\left(\operatorname{Id}_n + (p-2)rac{\xi\otimes\xi}{|\xi|^2}
ight)X
ight]$$

is the well-known Normalized *p*—Laplacian operator. See [Attouchi, Parviainen, Ruosteenoja - J. Math. Pures Appl., 2017] and [da Silva, Ricarte - Calc. Var. PDE, 2020].

• Fully nonlinear models with non-standard growth.

Other example we have in mind is the class of variable-exponent, degenerate elliptic equations in non-divergence form, which is, in some extent, the non-variational counterpart of certain non-homogeneous functionals satisfying nonstandard growth conditions:

$$\mathcal{G}_{p(x),q(x)}(x,\xi,X) := \left(|\xi|^{p(x)} + \mathfrak{a}(x)|\xi|^{q(x)} \right) F(x,X),$$

for rather general exponents $p,q\in C^0(\Omega;(0,\infty))$. See [Bronzi, Pimentel, Rampasso, Teixeira - J. Funct. Anal., 2020].

OBRIGADA PELA ATENÇÃO! =)