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Introduction



Given a bounded domain Ω ⊂ Rn, we investigate the doubly

degenerate fully non-linear elliptic problem{
H(x ,∇u)F (x ,D2u) = f (x) in Ω+ (u) ,

|∇u| = Q(x) on F(u).
(1)

where
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� H : Ω× Rn → R behaves as

L1 · Kp,q,a(x , |ξ|) ≤ H(x , ξ) ≤ L2 · Kp,q,a(x , |ξ|)

for constants 0 < L1 ≤ L2 <∞, with

Kp,q,a(x , |ξ|) := |ξ|p + a(x)|ξ|q, for (x , ξ) ∈ Ω× Rn;

� F : Ω× Sym(n)→ R is a uniformly elliptic operator;

� Q ≥ 0 is a continuous function;

� f ∈ L∞ (Ω) ∩ C (Ω);

� u ≥ 0 in Ω;

� Ω+(u) := {x ∈ Ω : u(x) > 0};
� F(u) := ∂Ω+(u) ∩ Ω.
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Outline

� In a first moment, we establish optimal Lipschitz regularity to

viscosity solutions;

� We prove the non-degeneracy of solutions;

� The next step is to investigate the regularity of the free

boundary F(u). We prove that flat free boundaries are of class

C1,β;

� Finally, we prove that Lipschitz free boundaries are os class

C1,β.
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Motivation

One of the main signatures of this model is its interplay between

two different kinds of degeneracy laws, in accordance with the

values of the modulating function a.

Ω× Rn 3 (x , ξ) 7→ H(x , ξ) ∝ |ξ|p + a(x)|ξ|q 0 < p < q <∞

and 0 ≤ a ∈ C 0(Ω).
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Motivation

For related regularity estimates and free boundary problems driven

by second order operators with a single degeneracy law:

� Araújo, Ricarte, Teixeira - (Calc. Var. PDE - 2015), (Ann.

Inst. H. Poincaré Anal. Non Linéaire - 2017);

� Birindelli, Demengel - (ESAIM Control Optim. Calc. Var. -

2014);

� Birindelli, Demengel, Leoni - (NoDEA - 2019);

� Da Silva, Leitão, Ricarte - (Math. Nachr. - 2021);

� Da Silva, Vivas - (Rev. Mat. Iberoam. - 2021), (Discrete and

Continuous Dynamical Systems, 2021);

� Imbert, Silvestre - (Adv. Math. - 2012), (JEMS - 2016).
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Motivation

The model in (1) can be considered the non-divergence form of

certain variational integrals from the Calculus of Variations with

double phase structure:

(w , f ) 7→ min

∫
Ω

(
1

p
|∇w |p +

a(x)

q
|∇w |q − fw

)
dx ,

where (w , f ) ∈
(
W 1,p

0 (Ω) + u0, L
m(Ω)

)
, a ∈ C 0,α(Ω, [0,∞)), for

some 0 < α ≤ 1, 1 < p ≤ q <∞ and m ∈ (n,∞];

� Colombo, Mingione - (Arch. Rational Mech. Anal. - 2015);

� Baroni, Colombo, Mingione - (Calc. Var. PDE - 2018);

� De Filippis - (JDE - 2019);

� De Filippis, Mingione - (The Journal of Geometric Analysis -

2020).
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Motivation

Historically the mathematical investigation of the regularity of the

free boundary F(u) in problems like (1) has a large literature and it

has presented wide advances in the last three decades or so.
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Motivation

Uniform Elliptic case - Variational approach.

The case f = 0 and H(x , ξ) = 1, was studied by minimizing

J (u) :=

∫
Ω∩{u>0}

f(x , u(x),∇u(x))dx −→ min,

where was proved existence of a minimum and regularity of the free

boundary via blow-up techniques, or via singular perturbation methods

for the problem ∆uε = βε(uε).

� Alt, Caffarelli - (J. Reine Angew. Math. - 1981);

� Caffarelli - (Rev. Mat. Iber. - 1987), (Comm. Pure Appl.

Math. - 1989).
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Motivation

Degenerate cases – Variational approach.

� Danielli, Petrosyan - (Calc. Var. PDE - 2005) established the

regularity near “flat points” of the free boundary of

non-negative solutions to the minimization problem

minJp(u) with Jp(u) :=

∫
Ω

(
|∇u|p + λp0χ{u>0}

)
dx ,

which is governed by the p-Laplacian operator, for f = 0,

1 < p <∞ and λ > 0.
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Motivation

� Mart́ınez, Wolanski - (Adv. Math. - 2008) study the

optimization problem of minimizing

minJG(u) with JG(u) :=

∫
Ω

(
G(|∇u|) + λ0χ{u>0}

)
dx ,

in an Orlicz-Sobolev scenario, thereby extending the

Alt-Caffarelli’s theory.
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Motivation

The study of existing, Lipschitz regularity and regularity of the free

boundary for homogeneous/inhomogeneous free boundary

problems driven by p(x)-Laplacian type operators as follows{
div(|∇u|p(x)−2∇u) = f (x) in Ω+ (u) ,

|∇u| = λ∗(x) on F(u).

can be found

� Fernández Bonder, Mart́ınez, Wolanski - (Nonlinear Anal. -

2010;

� Lederman, Wolanski - (Interfaces Free Bound., 2017), (J.

Math. Anal. Appl., 2019), (Math. Eng., 2021).
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Motivation

Uniform elliptic case – Non-variational approach.

� Feldman - (Indiana Univ. Math. J. - 2001)

For the context of fully non-linear elliptic equations, the

homogeneous problem, i.e. f = 0 (with H(x , ξ) ≡ 1).

� De Silva - (Interfaces Free Bound. - 2011);

� De Silva, Ferrari, Salsa - (J. Math. Pures Appl. - 2015).

For the non-homogeneous case, f 6= 0 (with H(x , ξ) ≡ 1), in the

one and two-phase scenarios, respectively.
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Motivation

In turn, the FBP considered in (1) also appears as the limit of

certain inhomogeneous singularly perturbed problems in the

non-variational context of high energy activation model in

combustion and flame propagation theories.

� Araújo, Ricarte, Teixeira - (Ann. Inst. H. Poincaré Anal. Non

Linéaire - 2017);

� Ricarte, Silva - (Interfaces and Free Bound. - 2015);

� Ricarte, Teixeira - (J. Funct. Anal. - 2011).
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Motivation

The simplest mathematical model (in this case) is given by: for

each ε > 0 fixed, we seek a non-negative profile uε satisfying{
[|∇uε|p + a(x)|∇uε|q] ∆uε = 1

εβ
(
uε

ε

)
+ fε(x) in Ω,

uε(x) = g(x) on ∂Ω,

in the viscosity sense for suitable data p, q ∈ (0,∞), a, g , where

βε behaves singularly of order o
(
ε−1
)

near ε-level surfaces. In such

a scenario, existing solutions are locally (uniformly) Lipschitz

continuous.

� da Silva, Júnior, Ricarte - (Rev. Mat. Iberoam. - 2022)
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Assumptions



Viscosity Solutions

Definition
Let u ∈ C (Ω) nonnegative. We say that u is a viscosity

supersolution (resp.subsolution) to{
H(x ,∇u)F (x ,D2u) = f (x) in Ω+ (u) ,

|∇u| = Q(x) on F(u).

if and only if the following conditions are satisfied:
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(F1) If φ ∈ C 2(Ω+(u)) touches u by below (resp. above) at

x0 ∈ Ω+(u) then

H(x0,∇φ(x0))F (x0,D
2φ(x0)) ≤ f (x0)(

resp. H(x0,∇φ(x0))F (x0,D
2φ(x0) ≥ f (x0)

)
.

(F2) If φ ∈ C 2(Ω) and φ touches u below (resp. above) at

x0 ∈ F(u) and |∇φ|(x0) 6= 0 then

|∇φ|(x0) ≤ Q(x0) (resp. |∇φ|(x0) ≥ Q(x0)) .

We say that u is a viscosity solution if it is a viscosity supersolution

and a viscosity subsolution.
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Continuity and normalization condition

We suppose that

Ω 3 x 7→ F (x , ·) ∈ C 0(Sym(n)) and F (·,On) = 0 where On is

the zero matrix.

This normalizing assumption can be impose without loss of

generality.
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Uniform ellipticity

For any pair of matrices X,Y ∈ Sym(n)

P−λ,Λ(X−Y) ≤ F (x ,X)− F (x ,Y) ≤ P+
λ,Λ(X−Y)

where P±λ,Λ stand for Pucci’s extremal operators given by

P−λ,Λ(X) := λ
∑
ei>0

ei (X) + Λ
∑
ei<0

ei (X)

and P+
λ,Λ(X ) := Λ

∑
ei>0

ei (X) + λ
∑
ei<0

ei (X)

for ellipticity constants 0 < λ ≤ Λ <∞, where {ei (X)}i are the

eigenvalues of X.
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ω−continuity of coefficients

There exist a uniform modulus of continuity ω : [0,∞)→ [0,∞)
and a constant CF > 0 such that

Ω 3 x , x0 7→ ΘF(x , x0) := sup
X∈Sym(n)

X 6=0

|F (x ,X)− F (x0,X)|
‖X‖

≤ CFω(|x − x0|),

which measures the oscillation of coefficients of F around x0.
Finally, we define

‖F‖Cω(Ω) := inf

{
CF > 0 :

ΘF(x , x0)

ω(|x − x0|)
≤ CF, ∀ x , x0 ∈ Ω, x 6= x0

}
.
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In our studies, the diffusion properties of the model (1) degenerate

along an a priori unknown set of singular points of existing

solutions:

S(u,Ω) := {x ∈ Ω : |∇u(x)| = 0}.

For this reason, we will enforce that H : Ω× Rn → [0,∞) behaves

as

L1 · Kp,q,a(x , |ξ|) ≤ H(x , ξ) ≤ L2 · Kp,q,a(x , |ξ|)

for constants 0 < L1 ≤ L2 <∞, where

Kp,q,a(x , |ξ|) := |ξ|p + a(x)|ξ|q, for (x , ξ) ∈ Ω× Rn.
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In addition, we suppose that the exponents p, q and the

modulating function a(·) fulfil

0 < p ≤ q <∞ and a ∈ C 0(Ω, [0,∞)).

Finally, we will assume the following condition: there exist a
universal constant Ca > 0 and a modulus of continuity
ωa : [0,∞)→ [0,∞) such that

|H(x , ξ)−H(y , ξ)| ≤ Caωa(|x − y |)|ξ|q, ∀ (x , y , ξ) ∈ Ω× Ω× Rn.
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Optimal Lipschitz Regularity



Lipschitz regularity of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.

Math.)
Let Q ∈ C 0(B1; [0,∞)) ∩ L∞(B1; [0,∞)) and u be a bounded viscosity
solution to (1) in B1. Then, there exists a universal constant
C1 = C1(n, λ,Λ, a, L1, p, q) > 0 such that

u(x0) ≤ C1.

(
‖u‖L∞(B1) + ‖Q‖L∞(B1) + max

{
‖f ‖

1
p+1
L∞(B1)

, ‖f ‖
1

q+1
L∞(B1)

})
dist(x0,F(u)),

for all x0 ∈ B1/2; i.e., solutions have at most linear behavior close to free
boundary points. Particularly, there exists
C2 = C2(n, λ,Λ, L1, p, q, ‖F‖Cω ) > 0 such that

‖∇u‖L∞(B1/2) ≤ C2.

(
‖u‖L∞(B1) + ‖Q‖L∞(B1) + max

{
‖f ‖

1
p+1
L∞(B1)

, ‖f ‖
1

q+1
L∞(B1)

}
+ 1

)
.
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The proof of the Lipschitz regularity can be obtained employing

some ideas performed for the scenario of singularly perturbed

FBPs.

� Araújo, Ricarte, Teixeira - (Ann. Inst. H. Poincaré Anal. Non

Linéaire - 2017);

� da Silva, Júnior, Ricarte - (Rev. Mat. Iberoam. - 2022);

� Ricarte, Silva - (Interfaces and Free Bound., 2015);

� Ricarte, Silva, Teymurazyan - (JDE - 2017);

� Ricarte, Teixeira - (J. Funct. Anal. - 2011).
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Sketch of the proof:

� Take x0 ∈ B1/2 such that x0 ∈ B+
1/2(u). We suppose that

dist(x0,F(u)) ≤ 1/2 and consider the scaled funtion

vx0,d0(x) :=
u(x0 + rd0x)

dist(x0,F(u))

for 0 < r < 1 to be chosen.

� The idea is to prove that vx0,d0(0) ≤ C0 for some universal

constant C0 > 0.
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� vx0,d0 is a non-negative viscosity solution of

Hx0,d0(x ,∇vx0,d0)Fx0,d0(x ,D2vx0,d0) = fx0,d0(x) in B1

where 

Fx0,d0(x ,X) := r2d0F
(
x0 + rd0x ,

1
r2d0

X
)

Hx0,d0(x , ξ) := rpH
(
x0 + rd0x ,

1
r ξ
)

ax0,d0(x) := rp−qa(x0 + rd0x)

fx0,d0(x) := rp+2d0f (x0 + rd0x)

Qx0,d0(x) := rQ(x0 + rd0x)

where Fx0,d0 ,Hx0,d0 and ax0,d0 satisfy the structural

assumptions.
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� Consider the annulus A 1
2
,1 := B1 \ B 1

2
and the barrier function

Φ : A 1
2
,1 → R+ given by

Φ(x) = µ0 ·
(
e−δ|x |

2 − e−δ
)

where µ0, δ > 0 will be chosen.

� We show that Φ is a strict viscosity subsolution to

Hx0,d0(x ,∇Φ)Fx0,d0(x ,D2Φ) = fx0,d0(x) in A 1
2
,1

provided we may adjust appropriately the values of µ0, δ > 0

and r > 0.
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� Choose µ0 := (e−δ/4 − e−δ)−1 · inf
∂B 1

2

vx0,d0(x) > 0. It follows

that

Φ(x) ≤ vx0,d0(x) on ∂A 1
2
,1.

� From the Comparison Principle, we can conclude that

Φ(x) ≤ vx0,d0(x) in A 1
2
,1.

� Let z0 ∈ F(vx0,d0) be a point that achieves the distance, i.e.,

rd0 = |x0 − z0| and consider y0 := z0−x0
rd0
∈ ∂B1.

27



� Choose µ0 := (e−δ/4 − e−δ)−1 · inf
∂B 1

2

vx0,d0(x) > 0. It follows

that

Φ(x) ≤ vx0,d0(x) on ∂A 1
2
,1.

� From the Comparison Principle, we can conclude that

Φ(x) ≤ vx0,d0(x) in A 1
2
,1.

� Let z0 ∈ F(vx0,d0) be a point that achieves the distance, i.e.,

rd0 = |x0 − z0| and consider y0 := z0−x0
rd0
∈ ∂B1.

27



� Choose µ0 := (e−δ/4 − e−δ)−1 · inf
∂B 1

2

vx0,d0(x) > 0. It follows

that

Φ(x) ≤ vx0,d0(x) on ∂A 1
2
,1.

� From the Comparison Principle, we can conclude that

Φ(x) ≤ vx0,d0(x) in A 1
2
,1.

� Let z0 ∈ F(vx0,d0) be a point that achieves the distance, i.e.,

rd0 = |x0 − z0| and consider y0 := z0−x0
rd0
∈ ∂B1.

27



� Taking into account the free boundary condition, we obtain

concerning the normal derivatives in the direction ν at x0 the

following

µ0δe
−δ ≤ ∂Φ(y0)

∂ν
≤ ‖Q‖L∞(B1),

which implies that

inf
∂B 1

2

vx0,d0(x) ≤ ‖Q‖L∞(B1)C(δ).
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� By invoking the Harnack inequality and the definition of
vx0,d0 , it follows that

sup
B rd0

2

(x0)
u(x) ≤ C0d0 ·

{
‖Q‖L∞(B1) + max

{
(rp+2d0)

1
p+1 , (rp+2d0)

1
q+1

}
Π
f ,ax0,d0
p,q

}
.

� By C1,β
loc -estimates we have

|∇u(x0)| ≤ C ·

‖vx0,d0‖
L∞

(
B 1

2

) + 1 + ‖fx0,d0‖
1

p+1

L∞
(
B 1

2

)
 .
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Non-degeneracy of solutions

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.

Math.)
Let Q ∈ C 0(B1; [0,∞)) ∩ L∞(B1; [0,∞)) and u be a bounded viscosity

solution to (1) in B1. Further, suppose that F(u) is a Lipschitz graph in

B1 with F(u) ∩ B+
1/2(u) 6= ∅. There exists a universal η0 ∈ (0, 1) and a

universal constant C∗ = C(n, λ,Λ, p, q, ‖F‖Cω(B1)) > 0 such that if

‖Q− 1‖L∞(B1) < η0

then

u(x0) ≥ C∗.dist(x0,F(u)),

for all x0 ∈ B+
1/2(u); i.e. solutions growth at least in a linear fashion close

to free boundary points.
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For the proof of the non-degeneracy result, the argument follows

as the one in [De Silva - Interfaces Free Bound., 2011], after

constructing the appropriate barrier.

We use the same idea as in

the proof of Lipschitz continuity; but here we need to prove that

vx0,d0(0) ≥ C∗; using the Harnack inequality and the Lipschitz

continuity.
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Free Boundary Regularity



Flatness implies C 1,β

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.

Math.)
Let u be a viscosity solution to (1) in B1. Suppose that

0 ∈ F (u) , Q (0) = 1 and F (0,X ) is uniformly elliptic. Then, there

exists a universal constant ε̃ > 0 such that, if the graph of u is

ε̃-flat in B1, i.e.

(xn − ε̃)+ ≤ u (x) ≤ (xn + ε̃)+ for x ∈ B1,

and

max
{
‖f ‖L∞(B1), [Q]C0,α(B1) , ‖F‖Cω(B1)

}
≤ ε̃,

then F (u) is C 1,β in B1/2 for some (universal) β ∈ (0, 1).
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The proof of the previous theorem is based on an improvement of

flatness property for the graph of a solution u: if the graph of u

oscillates away ε from a hyperplane in B1 then in Bδ0 it oscillates
δ0ε
2 away from possibly a different hyperplane.

The fundamental

tools to achieve this property are a Harnack type inequality and

characterizing of limiting solutions.

� De Silva - (Interfaces Free Bound. - 2011)
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In the proof of the Harnack inequality we have some difficulties to

overcome, since the structure of the operator

Gp,q[u] := H(x ,∇u)F (x ,D2u) requires some non-trivial

adaptations.

In fact, if ` is an affine function and u is a solution to

the problem

H(x ,∇u)F (x ,D2u) = f (x) in Br (x0), where x0 =
en
10
, (2)

we can not conclude that u + ` is a solution to the equation (2) yet.

In contrast, for p = q = 0 we know u + ` is still solution for (2). In

effect, De Silva have used this fact, thereby allowing us to apply

the Harnack inequality for v(x) = u(x)− xn, which plays a crucial

role in reaching an improvement of flatness for the graph of u.
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Lemma (Improvement of flatness)

Let u be a viscosity solution to (1) in Ω under assumptions

‖f ‖L∞(Ω) ≤ ε2 and ‖Q − 1‖L∞(Ω) ≤ ε2

with 0 ∈ F(u) and assume it satisfies

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ for x ∈ B1.

Then there exists a universal constant r0 > 0 such that if

0 < r ≤ r0 and 0 < ε ≤ ε0 (with ε0 depending on r), then(
〈x , ν〉 − r

ε

2

)+
≤ u(x) ≤

(
〈x , ν〉+ r

ε

2

)+
x ∈ Br ,

for some ν ∈ Sn−1 (unity sphere) and |ν − en| ≤ Cε2 for a

universal constant C > 0.
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Sketch of the proof (Flatness implies C 1,β):

� Let u be a viscosity solution to the free boundary problem{
H(x ,∇u)F (x ,D2u) = f (x) in B+

1 (u),

|∇u| = Q(x) on F(u)

with 0 ∈ F (u) and Q (0) = 1.

� Assume further that

(xn − ε̃)+ ≤ u (x) ≤ (xn + ε̃)+ for x ∈ B1,

and

max
{
‖f ‖L∞(B1), [Q]C0,α(B1) , ‖F‖Cω(B1)

}
≤ ε̃,

with ε̃ > 0 to be fixed.
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� Fix r̄ > 0 a universal constant such that

r ≤ min

{
r0,

(
1

4

) 1
α

}
,

where r0 comes from the improvement of flatness Lemma.

After chosen r , let ε0 := ε0(r) be the constant given by

improvement of flatness Lemma.

� Let

ε̃ := ε2
0 and εk := 2−kε0.

� The choice of ε̃ ensures that

(xn − ε0)+ ≤ u(x) ≤ (xn + ε0)+ in B1.

which implies by the improvement of flatness Lemma that

there exists ν1 with |ν1| = 1 and |ν1 − en| ≤ Cε0
2 such that(

〈x , ν1〉 − r̄
ε0

2

)+
≤ u(x) ≤

(
〈x , ν1〉+ r̄

ε0

2

)+
in Br̄ .
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� Now, consider the sequence of re-scaling profiles uk : B1 → R
given by

uk(x) :=
u(λkx)

λk

with λk = rk , k = 0, 1, 2, . . ., for a fixed r as previously.

� uk fulfils in the viscosity sense the following free boundary

problem{
H(λkx ,∇uk)Fk(x ,D2uk) = fk(x) in B+

1 (uk),

|∇uk | = Qk on F(uk),

where 

Fx(x ,X) := λkF
(
λkx , λ

−1
k X

)
Hk(x , ξ) := H (λkx , ξ)

ak(x) := a(λkx)

fk(x) := λk f (λkx)

Qk(x) := Q(λkx).

where Fk ,Hk and ak satisfy the structural assumptions.
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� We prove that in B1 we have

|fk(x)| ≤ ε2
k and |Qk(x)− 1| ≤ ε2

k .

� We iterate the above argument and obtain that

(〈x , νk〉 − εk)+ ≤ uk(x) ≤ (〈x , νk〉+ εk)+ in B1,

with |νk | = 1, |νk − νk+1| ≤ Cεk (with ν0 = en).
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� Therefore(
〈x , νk〉 −

ε0

2k
rk
)+

≤ u(x) ≤
(
〈x , νk〉+

ε0

2k
rk
)+

in Brk (3)

with

|νk+1 − νk | ≤ C
ε0

2k
.

� Furthermore, (3) implies that

∂{u > 0} ∩ Brk ⊂
{
|〈x , νk〉| ≤

ε0

2k
rk
}
,

which implies that B3/4 ∩ F(u) is a C 1,β graph.
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Lipschitz implies C 1,β

Theorem (da Silva; R.; Ricarte; Vivas - To appear in Israel J.

Math.)
Let u be a viscosity solution for the free boundary problem (1).

Assume further that 0 ∈ F(u), f ∈ L∞(B1) is continuous in B+
1 (u)

and Q(0) > 0. If F(u) is a Lipschitz graph in a neighborhood of 0,

then F(u) is C 1,β in a (smaller) neighborhood of 0.
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Comments about the proof:

We use a blow-up argument from the previous theorem and the

approach used in [Caffarelli - Rev. Mat. Iberoamericana, 1987]:

� We consider the re-scaled functions

uk(x) := uδk (x) =
u(δkx)

δk
,

with δk → 0 as k →∞;
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� Because of the non-degeneracy and the Lipschitz continuity

for uk ’s, uk → u∞ uniformly on compact sets. Then, we can

prove that u∞ solves{
F∞(D2u∞) = 0 in {u∞ > 0},

|∇u∞| = 1 on F(u∞),

with F(u∞) Lipschitz continuous (via compactness lemma and

cutting lemma).
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� Also, we can prove that u∞ is a one-phase solution, i.e. up to

rotations,

u∞(x) = x+
n ;

� Thus, for k large enough we have

‖uk − u∞‖L∞(B1) ≤ ε̃,

where ε̃ comes from the previous lemma;

� Therefore, uk fulfils ε̃-flat in B1, which implies that F(uk) is a

graph C 1,β and consequently F(u) are C 1,β, for some

β ∈ (0, 1).
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Some extensions



We can extend our results for nonlinear elliptic equations with

non-homogeneous term as follows.

� Multi degenerate operators in non-divergence form.

An extension of our results holds to general multi-degenerate

fully nonlinear models given by

G(x ,Du,D2u) :=

(
|Du|p +

N∑
i=1

ai (x)|Du|qi
)
F (x ,D2u),

where 0 ≤ ai ∈ C 0(Ω), i ∈ {1, · · · ,N}, and

0 < p ≤ q1 ≤ · · · ≤ qN <∞, which are a natural

non-variational counterpart of certain multi-phase variational

problems treated in [De Filippis, Oh - J. Differential

Equations, 2019].
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� Doubly degenerate (p, q)−Laplacian in non-divergence

form.

Other interesting class of degenerate operators where our

results work out is the double degenerate p−Laplacian type

operators, in non-divergence form, for 2 < p0 ≤ q0 <∞ and

1 < p <∞:

Gp0,q0(x , ξ,X ) = Hp0,q0(x , ξ)Fp(ξ,X )

where

Hp0,q0(x , ξ) := |ξ|p0−2 + a(x)|ξ|q0−2

and

Fp(ξ,X ) := Tr

[(
Idn + (p − 2)

ξ ⊗ ξ
|ξ|2

)
X

]
is the well-known Normalized p−Laplacian operator. See

[Attouchi, Parviainen, Ruosteenoja - J. Math. Pures Appl.,

2017] and [da Silva, Ricarte - Calc. Var. PDE, 2020].
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� Fully nonlinear models with non-standard growth.

Other example we have in mind is the class of

variable-exponent, degenerate elliptic equations in

non-divergence form, which is, in some extent, the

non-variational counterpart of certain non-homogeneous

functionals satisfying nonstandard growth conditions:

Gp(x),q(x)(x , ξ,X ) :=
(
|ξ|p(x) + a(x)|ξ|q(x)

)
F (x ,X),

for rather general exponents p, q ∈ C 0(Ω; (0,∞). See [Bronzi,

Pimentel, Rampasso, Teixeira - J. Funct. Anal., 2020].
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OBRIGADA PELA ATENÇÃO! =)
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