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Zhikov introduced the double phase integral functional
. /(yvuyﬂ +aW)|Vu)dx, 1<p<g O0<a()<L (1)
Q

in order to provide models of strongly anisotropic materials in the context of
homogenization and elasticity. This functional revealed to be important also
in the study of duality theory and of the Lavrentiev phenomenon.

Furthermore, functional (1) belongs to the class of the integral functionals
with nonstandard growth condition, according to Marcellini’s terminology.
That is, the integrand H(x, £) = [£|P + a(x)|£|? has an unbalanced growth, as

I[P < H(x, &) < b(1+[£]9) forae x € Qandall & € RY,
with b > 0.
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Part 1:

A critical (p, g) system



(p,q) SYSTEM

e G.M. Figueiredo, Existence of positive solutions for a class of p&q
elliptic problems with critical growth on RN, J. Math. Anal. Appl. (2011)

In the above paper, they studied the equation in RV
—div(A(|Vul)Vue) + B(lul)u = Af (u) + |u”" u,
where
@ A and B have a nonstandard (p, ¢) growth, with p < g;
@ )\ is areal parameter;
@ f is a subcritical continuous function;

@ " =Np/(N — ), with 1 < p < N, is the maximum critical Sobolev
exponent, according to the behaviour of A.



(p,q) SYSTEM

e A. Fiscella, P. Pucci, (p, q) systems with critical terms in RN, Nonlinear
Anal. (2018)

We generalize the result, studying the following system in RV

(. u|*~2u
—div(A(|Vu|)Vu) + B(Ju)u — o PE = AH,(x,u,v)
Wl
Mp—zv (8)
—div(A(|VV))Vv) + B(|v|)v — o PE = \H, (x,u,v)
L,
%

where
ea>landf > 1,witha+8=p"and 1 < p < N;

@ o and )\ are real parameters.



(p,q) SYSTEM

Concerning the elliptic part, we assume

(C1) A and B are strictly positive and strictly increasing functions of class
CH(RT).

Clearly, (Cy) implies that tA(¢) — 0 and tB(1) — O ast — 0%,

Let us introduce for simplicity the functions A and B as the potentials, which
are 0 at 0 and which are obtained by integration from

A'(t) =1A(t), B'(1)=1tB(r) forallt € R,

where A(¢) and 7B(t) are defined to be 0 at 0 thanks to (Cy).



(p,q) SYSTEM

(G2)

there exist constants ay, ag, bg, bg strictly positive, with ay < 1, ay, ay,
by, by nonnegative, with the property that ay > 0 implies by > 0, a; > 0
and by > 0, and there are exponents p and g, with 1 < p < g < p*,

where 1 < o < N with
P lf‘alz()?
p:

q, ifCl] > 07
such that for all t € ]R(J)r
apt” ! + Ip+ (an)a ™' < A1) < apt? ™' 4 g4
bot" ™! + L+ (01)b119™" < B/() < bor” ™! + by,

where 1g is the characteristic function of a Lebesgue measurable subset
E of R.

there exist constants 6 and ¥, with p < min{6, ¥} < ©*, such that
0A(t) > tA' (1), IB(t) > tB'(t) forallt € R
holds.



EXAMPLES

We just present few examples which illustrate the general systems covered in
this paper under the assumptions (C;)-(C3). In the examples we tacitly
suppose that 1 < p < g < p* and 1 < p < N, without mentioning.

If.A(t) = B(l‘) = l‘p/p, (S Ra_, then a9 = a9 =byg =bg=1,
ag=a=b=b=0, p=p, 0 =9=p, a+ [ =p* and (S) reduces to

_ ulP~2u o _
—Apu+ uf zu—a‘ ;xll’ :)\Hu(x,u,v)—l—p—*|v|ﬁ|u]°‘ 2u,

_ v[P—2y I6] _
—Apy+ vfP zv—a’ ;x]l’ :)\Hv(x,u,v)+l;|u|a|v|ﬁ 2y,

where Apu = div(|VulP~*Vu).



EXAMPLES

Similarly, for A(f) = B(t) = #/p + t1/q, t € R{, then

a+fp=

(

¢" and (S) becomes

ul9"2u
—Apu — Agu+ |uf "u+ |u|fu — 0| ||x|‘1 = \H,(x,u,v)
a
+ vl lul* 2,
q—2
L = \H,(x,u,v)

—ApY = A+ PR T — o Fr

+ ﬁ*]u|a|v|5*2v.
q




EXAMPLES

For A(t) =#/p+ (1 +#)>? —1/2 and B(t)=#/p+cti/q, t € R,
¢ >0, and whenever 2 < p < ¢, then ag=byg=bg =1, ag =2,

ag=a1=0, by=c¢, p=p, 0=p and ¥ =p if ¢ =0, while ¥ = g if
¢>0, a+ f=p" and (S) reads as

p—2
—Apu — div Vi Vlﬁz/ + P 2u + e |uli%u
(1+|Vulp) b

p—2
- 0'|u| “_ AH, (x,u,v) + %|v!5|u|°‘_2u,
p

[

p—2
—Apv —div V] Vlvz + P2 4 e |v]7 2y
=2/p
(1 + |Vv|l’)

p—2
—0o v~y = \H,(x,u,v) + é\u|0‘|v|ﬁ_2v.
x [x[P p*




EXAMPLES

[l
—-
I
—

H=V1+2—-1+1/4 and B(t) =12/2 +1*/4, t € RS, with
p<qg=4, thenay=by=by=ayp=a; =by=0b; =1, a1:1/2,
g=4, 0=09=4, a+f=¢" =4" and (S) reads as

YVu u’

| = Aqutu+ud —o— = NH,(x,u,v
(W : |vu|z> : ot A
+ Pl

3
—div( v

1—{_|v|2) —A4V+V+V3_U|;7:>\HV(X,M,V)
1%

ﬁ al, |8—2
| +4—*|u\ [v|”~v.



EXAMPLES

As in the example above, taking A(7) = tarctant — log /1 + 2 + r* /4 and
ay=by=by=ap=a,=byp=b =1, a1 =2/3, p=qg=4,
0=9=4, a+ =g =4" and (S) reads as

3
Vu) — Aqutu+ud — O'W = \H,(x,u,v)

+ b,

( di arctan |Vul
—div | —————
|Vul

3

VV) —A4v+v+v3—av— = \H,(x,u,v)

. [arctan |Vy|
—div|[ ———— o

Vvl

+ g\uloﬂvlﬁ_zv.



(p,q) SYSTEM

While the nonlinearity H in (S) is a Carathéodory function satisfying

(H) Fora.e. x € RV it results H(x, -,-) € C'(R?), H(x,-,-) > 0 in R?,
Hy(x,u,v) =0forallu <0andv € R, while H,(x,u,v) = 0 for all
uecRandv <0.

Furthermore, there exist m, m, vy such that p < m < m < p*,
max{0,9} < v < p* and for every € > 0 there exists C. > 0 for which
the inequality

|H.(x,2)] < ms]z]m_l + ng\z\m_l forany z € R?,

where z = (u,v), |z| = Vu? +v?, H, = (Hy, H,), and also the
inequalities

0 <~H(x,z) < H,(x,z) -z forany z € R?,

hold for a.e. x € RN, where 0, 9 are given in (C3).
Finally, H(x,u,v) > 0 for a.e. x € RN and all (u,v) € RT x R,



FUNCTIONAL SPACE

The best Hardy constant, called H,, = H(gp, N), is given by

p dx \ /%
”VMHKD where H”HHgJ — </ |u|p X ) ’
RN

ueptoyy [lully, [x®
u#0

and D'#(R") denotes the completion of C3°(RY), with respect to the norm
1
Vil p = (S [Vul#d)"/®.

Since p = p if a; = 0, while p = ¢ if a; > 0, the natural space where finding
solutions of (S) is

W= (WP@RY) nw'*(RY)) x (WPRY)nw'oRY)),
endowed with the norm

1) 2= Nl + [Vllwre + T (@) (lullwra + [Vl
where |[u|| 1o = |ully + || Vullp for all u € WP (RV) and any p > 1.



MAIN RESULT

THEOREM 1 (FISCELLA & Puccl, NA 2018)

Suppose that (C1)-(C3) and (H) hold.
Then, for any o € (—00, ¢, H,,) there exists X = X(o) > 0 such that system

(. |u|®~2u
—div(A(|Vu|)Vu) + B(|u|)u — o FE = AH,(x,u,v)
+ Wl 2
|v‘p72v (8)
—div(A(|VV))Vv) + B(]v|)v — o FE = \H,(x,u,v)
+ Dugepp2v,
&

admits at least one nontrivial solution (uy ), vy ) in W for all A > A.
Moreover, each component of (i, x, V. ») is nontrivial and

lim ||(ugx,ver)|| = 0. (2)
A—00




SKETCH OF THE PROOF

Clearly, the weak solutions of (S) are exactly the critical points of the
Euler-Lagrange functional Z,, , : W — R, given by

Lot = [ | [A(V) A |, 1800 + Bbax

g

- — |ul® + [v]*) )\/ H(x,u,v)d
p/ ( =

- L / w2y,
2 JRN

which is well defined and of class C! on W.
We can set the mountain pass level

Cop = égﬁ,ﬁg’ﬁ Zon(&(1),

where

I = {¢ € C([0, 1, W) : £(0) = (0,0), Z,a(£(1)) < 0}.



SKETCH OF THE PROOF

In order to prove the delicate Palais-Smale condition at ¢, », for a
Palais-Smale sequence {(un, v,)}n» C W we have to show that:

(i) up to a subsequence, (un, vy) — (Us x, Vo,x) in W as n — o0;

(ii) by concentration-compactness principle, there exists A* = A*(o) > 0
such that the weak limit (i, ), v5,)) is a solution of (S) for all A > A*;

(iif) since ¢, \ — 0as A — oo, the set { (), Vo)) }a>a+ satisfies the
asymptotic property (2);

(iv) there exists A = A(c) > A* such that (i, v,) — (Ugx, Vo) in W as
n— oo forall A > A.



A SIMPLIFIED SITUATION

THEOREM 2 (FISCELLA & Puccr, NA 2018)
Suppose that A satisfies (C) ), B verifies condition

(B) B € C(R") and t — tB(t) is strictly increasing in R™, with tB(t) — 0 as
r— 0.

and that (C»)-(C3) and (H) hold.

Then, there exists A* > 0 such that system

—div (A(|Vul) V) + B(|u)u = Ay (u, v) + %WW*Z”,
; (s)

—div(A(|VV]))Vv) + B(|v|)v = AHy(u, v) + - |u|*|v|* 2,

o
admits at least one nontrivial solution (uy, vy) in W for all A > \*. Moreover,

each component of (uy, vy ) is nontrivial and

lim H(uA,v,\)H =0
A—00




SKETCH OF THE PROOF

PROPOSITION

For any 0 € (—00, ¢, Hy) and A > 0 let {(u,, v,)}n C W be a Palais-Smale
sequence at level ¢ such that (u,,v,) — (0,0) in W as n — co. Then

(i) either (u,,v,) — (0,0) in W,

(if) or there exists R > 0 and a sequence (y,), € R such that

limsup/ (|unl? + |val?)dx > 0.
Br(yn

n—oo

Moreover, (y,), is not bounded in RV,

By this proposition, we use a compactness argument for the translated

sequence {(u,, V) }n, With %, = u,(- + yn), vy = vu(- + yu). This fact forces
the main functions in (S’) are independent of x.



Part 2:

A Hardy double phase problem



HARDY PROBLEM

o A. Fiscella, A double phase problem involving Hardy potentials, Appl.
Math. Optim. (2022)

We study the following problem

ul~%u ul*"%u

—div(A(x, Vu)) — o < X7 + a(x) X ) =g(x,u) inQ,
u=20 in 092,

(Pnu)

where the main operator is the so-called double phase operator, set as
div(A(x, Vu)) = div (|VulP"*Vu + a(x)|Vu|?">Vu) .

Here, we assume that Q C R is an open bounded set with Lipschitz
boundary and 0 € €2, ¢ is a real parameter, | < p < ¢ < N and

1 _
(ar) T4 N while a : ) — [0, 00) is Lipschitz continuous.
p



HARDY PROBLEM

Here g : 2 x R — R is a Carathéodory function verifying

(g1) there exists an exponent r € (q,p*), with p* = Np/(N — p), such that for
any € > 0 there exists c. = c¢(¢) > 0 and

g 0)] < ge || + ro- [

holds for a.e. x € QY and any t € R;
(g2) there exist 0 € (q,p*), ¢ > 0 and ty > 0 such that

¢ < 0G(x,1) <1tg(x,t)

t
fora.e. x € Q and any |t| > ty, where G(x,t) = / g(x, 7)dr.
0

The existence of r and 6 are guaranteed by (a; ), which joint with g > 1 yields
that g < p*.



FUNCTIONAL SPACE

Thanks to (a;), the function H : 2 x [0, 00) — [0, 00) defined as
H(x,t) =1 +a(x)t!, forae.x e Qandforanyr e [0,00),
is a generalized N-function. Therefore, by

@ J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math.
1983

we can define the Musielak-Orlicz space L™ () as
L*(Q) = {u: Q — R measurable | oy (u) < oo},

endowed with the Luxemburg norm

|lu||3 := inf {)\ >0: oy (;) < 1},

where o, denotes the H-modular function, set as

o) == /Q H(x, [uf)dx = /Q (Il + a(x) uf?) di.



FUNCTIONAL SPACE

We point out that
min{[[ullf, lullf} < op(u) < max{ully, [lull7,}-
The related Sobolev space W' (Q) is defined by
whH(Q) == {u e L*(Q) . |Vul € L)},
endowed with the norm
[l 3¢ = [luellag + [TVl [[ 3¢

The natural functional space where finding solutions of () is Wé’” (Q),
given by the completion of C3°(£2) in W'7¢(Q) which can be endowed with
the norm

[l := 11Vl [ 34,
equivalent to the norm || - ||1 7;, whenever (a;) holds true, as proved in

@ F. Colasuonno, M. Squassina, Eigenvalues for double phase variational
integrals, Ann. Mat. Pura Appl. (2016)



FUNCTIONAL SPACE

Denoting by the weighted space

Li(Q) = {u : @ — R measurable

/ a(x)|u|ldx < oo} ,
Q
endowed with the seminorm

1/q
g = ( / a<x>\u|qu) ,
Q

we have the following embeddings.

PROPOSITION (COLASUONNO & SQUASSINA, AMPA 2016)

(i) Wg’”(m < Wy (Q) forall r € [1, pl;

ii) W, ( ) <= L"(Q) for all r € [1,p*];

i) W, ( ) =< L'(Q) forall r € [1,p*);
(iv) L (Q) = Li(2);

) L1(Q) — L*(Q).




HARDY PROBLEM

In order to handle the Hardy potentials in

|ul"~2u | 2u

—div(A(x, Vu)) — o ( P + a(x) X[ > =g(x,u) inf,

u=20 in 092,

(Pn)

we need a further assumption
(a2) a(Xx) < a(x) for any X € (0,1] and any x € Q,

which guarantees for any u € WS’%(Q) that

y i _ [ P
Hylully, < [[Vullp, with |[[ul|g, := dex
q q . |u|?
HqHuHan < ||Vu|| a with ||MHHq,a = a(x)‘iqu7
: o x\
m —m
where constant H,,, := ( ) form = p, q.
—m



HARDY PROBLEM

THEOREM (FISCELLA, AMOP 2022)

Let Q C R be an open, bounded set with Lipschitz boundary and 0 € €2. Let
1 <p < g <N and a(-) satisfy (a1)-(az). Let (g1)-(g2) hold true.

Then, for any o € (—oo0, min{H,, H,}) problem

|ulP~2u |ul?=%u

—div(A(x, Vu)) — o ( X7 + a(x) X[ ) =g(x,u) in{, (P)
u=20 in 0€).

admits a non-trivial weak solution.




HARDY PROBLEM

THEOREM (FISCELLA, AMOP 2022)

Let Q C R be an open, bounded set with Lipschitz boundary and 0 € €2. Let
1 <p < g <N and a(-) satisfy (a1)-(az). Let (g1)-(g2) hold true.

Then, for any o € (—oo0, min{H,, H,}) problem

— div(A(x, Vi) — o (w w)

|x|P
u=20 in 0.

admits a non-trivial weak solution.

The theorem generalizes the existence result stated in

@ W. Liu, G. Dai, Existence and multiplicity results for double phase
problem, J. Differential Equations (2018)

where they considered () without Hardy potentials, namely when o = 0.



HARDY PROBLEM

Indeed, let us consider operator L, : WS’H(Q) — (W&’H (Q)) , such that

(Lo(u),v) ::/ (|Vu\p_2 + a(x)|Vu|q_2) Vu - Vvdx
Q
p—2 q-2
— 0’/ (M %o a(x) ]u| uv) dx, wu,ve Wé’H(Q).
Q x|

[x[P

REMARK
Let2 <p <g<Nando € (—00,K,,min{H,, H;}), with K, , € (0, 1).

Then, operator L, is a mapping of (S) type, that is if u, — u in WS’H(Q) and

lim (L, (un) — Lo(u),uy —u) =0

n—oo

then u, — u in Wé’H(Q).




HARDY PROBLEM

Clearly, the weak solutions of

|ul"~2u |1 2u

—div(A(x,Vu)) — o ( 7 +a(x) X7 ) =g(x,u) in,
u=20 in 0L,

(Pn)

are exactly the critical points of the Euler-Lagrange functional
o - Wy (Q) — R, given by

1 1 1 1
— P q _ - P - q _
o (u) .—pHVqu+qHVqu,a a<p\\u!!H,,+q\\u!!Hq,a) /QG(x,u)dx,

which is well defined and of class C' on WS’H(Q). However, here we have to
deal with the non-compactness of the embeddings

Wo P (Q) = 12, x[77), Wy H(Q) = LI(Q, a(x)|x| ).



Part 3:

Critical Sobolev double phase
problems



FIRST CRITICAL PROBLEM

o C. Farkas, P. Winkert, An existence result for singular Finsler double
phase problems, J. Differential Equations (2021)

They considered the following problem
— div(Ap(x, Vu)) = u? 71+ X (Lﬂ_l +g(x,u))  in,
u>0 in €,
u=20 on OS2,

driven by the Finsler double phase operator, set as
div(Ar(x, Vu)) = div (FP~(Vu)VF(Vu) + a(x)F*~ (Vu)VF(Vu))

with F a positively homogeneous Minkowski norm. They also assumed that
Q) C R" is an open bounded set with Lipschitz boundary, \ is a real
parameter, p* = Np/(N — p), exponent y € (0, 1), g is a subcritical term,

2 <p < g <N and (a;) holds true.



FIRST CRITICAL PROBLEM

@ C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with
nonlinear boundary condition, Adv. Nonlinear Stud. (2021)

We study the following problem

— div(Ap(x, Vi) + uP " + a(x)ud™" = u? !

+ A (u7*1+g1(x, u)) in Q,
u>0 in §2,
Ap(x,Vu) - v =u""" + g(x,u) on 99,

still driven by the Finsler double phase operator
div(Ap(x, Vu)) = div (FP~1(Vu)VF(Vu) + a(x)F*~ (Vu) VF(Vu)) .

We assume that Q@ C R is an open bounded set with Lipschitz boundary, ) is
a real parameter, v € (0, 1), p* = Np/(N —p) and p. = (N — 1)p/(N — p),

1 <p<gqg<Nand

~ N
@) ot

_— lea: ) ' L>®(9).
N+q—1<p’ while a : Q0 — [0, 00) witha € L>(Q2)



FIRST CRITICAL PROBLEM

Here F : RY — [0, 00) is a positive homogeneous function satisfying
(fi) FeCe@®Y\{0});

(f2) the Hessian matrix V?(F?/2)(€) is positive definite for all £ # 0;
F(=¢)
F(¢)
We point out that in general 7 > 1. When F coincides with the Euclidean

1/2
norm, that is F(§) = (vazl |§,-|2> for £ € RV, of course rp = 1.

(f3) the reversibility rp = I?;%c is finite.

In this direction, the operator
div(Ap(x, Vu)) = div (FP~1(Vu)VF(Vu) + a(x)F*~ (Vu) VF(Vu))
reduces to the classical double phase operator

div(A(x, Vu)) = div (|Vu|p_2Vu + a(x)|Vu|q_2Vu) .



FIRST CRITICAL PROBLEM

The natural solution space for (Z?y) is the Musielak-Orlicz Sobolev space
WHHF(Q), defined by

WHE(Q) = {u e L*(Q) : F(Vu) € LH(Q)},

endowed with the norm

lullva.r == lullz + [F(Vu) |l

Here, g1 : 2 x R — Rand g : 92 x R — R are Carathéodory functions
verifying

(h) gi(x,1) = ga(x,t) = 0 forallt < 0 and fora.e. x € Q and x € 09,
respectively. Furthermore, there exist 01 € (1,p), r1 € |p,p*),
ra € (p,ps) as well as nonnegative constants ay, a; and by such that
gi(x, 1) < a4+ byl fora.e.x € Q and forallt > 0,
g(x, 1) < a2~ ! fora.e.x € 00 and for all t > 0.



FIRST CRITICAL PROBLEM

THEOREM (FARKAS & FISCELLA & WINKERT, ANS 2021)

Let © C RY be an open, bounded set with Lipschitz boundary, and let
v€(0,1). Let 1 <p < g < N and a(-) satisfy (a;). Let (fi)-(f3), (k) hold
true.

Then, there exists A, > 0 such that for any A € (0, \,) problem

— div(Ap(x, Vi) + u?~" + a(x)u?™" = u? !

+ A (u'y_l—&—gl(x, u)) in Q,
u>0 in €2,
Ap(x,Vu) - v =u""" + g(x, u) on 09},

(2n)

admits a positive weak solution.




FIRST CRITICAL PROBLEM

Clearly, the weak solutions of

— div(Ap(x, Vi) + u?~" + a(x)u?™" = u? !

+ A (u771+g1(x, u)) in Q,
u>0 in 2,
Ar(x,Vu) - v =u?"" + g(x, u) on 092,

(Zv)

are the critical points of the Euler-Lagrange functional Jy : W''74F(Q) — R,
given by
1 o1 S R SO I

Iatu) = ZINEVl + 2IFVilga + Jlluly + 2 llulld.a = 22 Tl

A 1

- 7/ ()" de )\/ Gy (t, 4 ) dx — — s | oo —/ Go (x, 13 ) do,

Y Jao Q D+ ' o0
where u+ = max(4u, 0), which is not differentiable in WH*-F(Q). Also, we
have to deal with the lack of compactness of embeddings

WUHE(Q) < 177(Q), WHHE(Q) — 1P+(09). 3)



FIRST CRITICAL PROBLEM

For this, let ¥ : (0, 00) — R set as

ZP*_ICP* « px—1.Px
1 p* tp - 2 Cp. tp*_p7

= pzpiler - p* p*

U(r) :
with ¢+, ¢,, > 0 given by (3). Let o* > 0 be the unique value such that
U(p*)=0.

Then, for any ¢ € (0, o*) we restrict J) to the closed convex set B,(0), which
is given by

By(0) := {u € W (Q) : ull, + |F(Vu)|, < o},

and by minimization and truncation arguments we get our solution.



SECOND CRITICAL PROBLEM

e C. Farkas, A. Fiscella, P. Winkert, On a class of critical double phase
problems, J. Math. Anal. Appl. (2022)

We study the following problem

—div(A(x, Vi) = Mu| 2u+ |uf" "2u  inQ,
{ (A(x, Vi) = Aulu + Ju (P)

u=20 on 92,

driven by
div(A(x, Vu)) = div (|VulP"*Vu + a(x)|Vu|? > Vu)

where 2 C RY is an open bounded set with Lipschitz boundary, ) is a real
parameter, r € (1,p), p* =Np/(N —p), 1 <p < g <N and

1 _
(ay) 14 N while a : ) — [0, 00) is Lipschitz continuous.
p



SECOND CRITICAL PROBLEM

THEOREM (FARKAS & FISCELLA & WINKERT, JMAA 2022)

Let 2 C R" be an open, bounded set with Lipschitz boundary and let
re(l,p).Letl < p < g < N and a(-) satisfy (a;).

Then, there exists A* > 0 such that for any A € (0, A*) problem

—div (A(x, Vu)) = Nu| " 2u+ [uf" 2u  inQ,
u=20 on 0S).

admits infinitely many weak solutions with negative energy values.




SECOND CRITICAL PROBLEM

Clearly, the weak solutions of

S
u=20 on 912, (#p)

{ —div (A(x, Vo)) = Mu| " 2u+ |uf’" 2u  inQ,
are the critical points of the Euler-Lagrange functional /) : Wé’H(Q) — R,
given by
A 1

1 1 .
— )4 - q _ r__ 4
I\(u) == 5 [Vullf + p IVullGa = - llell; o (7]
which is of class C! on W&’H(Q). However, I is not bounded from below.
For this, we introduce a truncation argument to control the critical term,

inspired by

o J. Garcia Azorero, . Peral Alonso, Multiplicity of solutions for elliptic

problems with critical exponent or with a nonsymmetric term, Trans.
Amer. Math. Soc. (1991)



SECOND CRITICAL PROBLEM

Furthermore, in order to study the compactness of

1

1 1 A *
Lv(u) := —||Vulll + =||Vu||2,, — =||ul|" — —||ul|’-
(u) pH 15 qH 1G.a =~ llell> p*H [

in the whole space W(;’H(Q), we have to deal with the lack of compactness of
embedding

Wy Q) < 177 (Q).
Even if W&’H(Q) — Wé ?(Q), the application of the Lions’ concentration

compactness principle fails. For this, we exploit a suitable convergence
analysis of gradients, inspired by

@ L. Boccardo, F. Murat, Almost everywhere convergence of the gradients
of solutions to elliptic and parabolic equations, Nonlinear Anal. (1992)



OPEN QUESTION

Open question: which is the optimal exponent of a Sobolev type embedding
for W (0)?



OPEN QUESTION

Open question: which is the optimal exponent of a Sobolev type embedding
for W (0)?

We know from paper

o X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear
Anal. (2012)

that WH7(Q) < L*+(Q), where H,, is the Sobolev conjugate function of .
That is, H. : © x [0,00) — [0, 00) is such that

s 24—1
H,  (x,5) = / Wdﬂ for any (x,s) € Q x [0, 00)
0 T N
 TH(x, 1) if0<7T <1,
i) = { Hx,7) if7>1.

However, we do not know how H.. explicitly looks like in the double phase
setting.



Thank you for your attention!
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