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Part 1:

A critical (p, q) system



(p, q) SYSTEM

G.M. Figueiredo, Existence of positive solutions for a class of p&q
elliptic problems with critical growth on RN , J. Math. Anal. Appl. (2011)

In the above paper, they studied the equation in RN

−div
(
A(|∇u|)∇u

)
+ B(|u|)u = λ f (u) + |u|℘∗−2u,

where

A and B have a nonstandard (p, q) growth, with p < q;

λ is a real parameter;

f is a subcritical continuous function;

℘∗ = N℘/(N − ℘), with 1 < ℘ < N, is the maximum critical Sobolev
exponent, according to the behaviour of A.



(p, q) SYSTEM

A. Fiscella, P. Pucci, (p, q) systems with critical terms in RN , Nonlinear
Anal. (2018)

We generalize the result, studying the following system in RN

−div
(
A(|∇u|)∇u

)
+ B(|u|)u− σ |u|

℘−2u
|x|℘

= λHu(x, u, v)

+
α

℘∗
|v|β|u|α−2u,

−div
(
A(|∇v|)∇v

)
+ B(|v|)v− σ |v|

℘−2v
|x|℘

= λHv(x, u, v)

+
β

℘∗
|u|α|v|β−2v,

(S)

where
α > 1 and β > 1, with α+ β = ℘∗ and 1 < ℘ < N;

σ and λ are real parameters.



(p, q) SYSTEM

Concerning the elliptic part, we assume

(C1) A and B are strictly positive and strictly increasing functions of class
C1(R+).

Clearly, (C1) implies that tA(t)→ 0 and tB(t)→ 0 as t→ 0+.

Let us introduce for simplicity the functions A and B as the potentials, which
are 0 at 0 and which are obtained by integration from

A′(t) = tA(t), B′(t) = tB(t) for all t ∈ R+
0 ,

where tA(t) and tB(t) are defined to be 0 at 0 thanks to (C1).



(p, q) SYSTEM

(C2) there exist constants a0, a0, b0, b0 strictly positive, with a0 ≤ 1, a1, a1,
b1, b1 nonnegative, with the property that a1 > 0 implies b1 > 0, a1 > 0
and b1 > 0, and there are exponents p and q, with 1 < p < q < ℘∗,
where 1 < ℘ < N with

℘ =

{
p, if a1 = 0,
q, if a1 > 0,

such that for all t ∈ R+
0

a0tp−1 + 1R+(a1)a1tq−1 ≤ A′(t) ≤ a0tp−1 + a1tq−1,

b0tp−1 + 1R+(b1)b1tq−1 ≤ B′(t) ≤ b0tp−1 + b1tq−1,

where 1E is the characteristic function of a Lebesgue measurable subset

E of R.

(C3) there exist constants θ and ϑ, with ℘ ≤ min{θ, ϑ} < ℘∗, such that

θA(t) ≥ tA′(t), ϑB(t) ≥ tB′(t) for all t ∈ R+
0

holds.



EXAMPLES

We just present few examples which illustrate the general systems covered in
this paper under the assumptions (C1)-(C3). In the examples we tacitly
suppose that 1 < p < q < ℘∗ and 1 < ℘ < N, without mentioning.

If A(t) = B(t) = tp/p, t ∈ R+
0 , then a0 = a0 = b0 = b0 = 1,

a1 = a1 = b1 = b1 = 0, ℘ = p, θ = ϑ = p, α+ β = p∗ and (S) reduces to
−∆pu + |u|p−2u− σ |u|

p−2u
|x|p

= λHu(x, u, v) +
α

p∗
|v|β|u|α−2u,

−∆pv + |v|p−2v− σ |v|
p−2v
|x|p

= λHv(x, u, v) +
β

p∗
|u|α|v|β−2v,

where ∆pu = div
(
|∇u|p−2∇u

)
.



EXAMPLES

Similarly, for A(t) = B(t) = tp/p + tq/q, t ∈ R+
0 , then

a0 = a0 = a1 = a1 = b0 = b0 = b1 = b1 = 1, ℘ = q, θ = ϑ = q,
α+ β = q∗ and (S) becomes

−∆pu−∆qu + |u|p−2u + |u|q−2u− σ |u|
q−2u
|x|q

= λHu(x, u, v)

+
α

q∗
|v|β|u|α−2u,

−∆pv−∆qv + |v|p−2v + |v|q−2v− σ |v|
q−2v
|x|q

= λHv(x, u, v)

+
β

q∗
|u|α|v|β−2v.



EXAMPLES

For A(t) = tp/p + 1
2(1 + tp)2/p − 1/2 and B(t) = tp/p + c tq/q, t ∈ R+

0 ,
c ≥ 0, and whenever 2 ≤ p < q, then a0 = b0 = b0 = 1, a0 = 2,
a1 = a1 = 0, b1 = c, ℘ = p, θ = p and ϑ = p if c = 0, while ϑ = q if
c > 0, α+ β = p∗ and (S) reads as

−∆pu− div

(
|∇u|p−2∇u(

1 + |∇u|p
)1−2/p

)
+ |u|p−2u + c |u|q−2u

− σ |u|
p−2u
|x|p

= λHu(x, u, v) +
α

p∗
|v|β|u|α−2u,

−∆pv− div

(
|∇v|p−2∇v(

1 + |∇v|p
)1−2/p

)
+ |v|p−2v + c |v|q−2v

− σ |v|
p−2v
|x|p

= λHv(x, u, v) +
β

p∗
|u|α|v|β−2v.



EXAMPLES

If A(t) =
√

1 + t2 − 1 + t4/4 and B(t) = t2/2 + t4/4, t ∈ R+
0 , with

2 = p < q = 4, then a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1, a1 = 1/2,
℘ = q = 4, θ = ϑ = 4, α+ β = q∗ = 4∗ and (S) reads as

−div

(
∇u√

1 + |∇u|2

)
−∆4u + u + u3 − σ u3

|x|4
= λHu(x, u, v)

+
α

4∗
|v|β|u|α−2u,

−div

(
∇v√

1 + |∇v|2

)
−∆4v + v + v3 − σ v3

|x|4
= λHv(x, u, v)

+
β

4∗
|u|α|v|β−2v.



EXAMPLES

As in the example above, taking A(t) = t arctan t − log
√

1 + t2 + t4/4 and
B(t) = t2/2 + t4/4, t ∈ R+

0 , with 2 = p < q = 4, then
a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1, a1 = 2/3, ℘ = q = 4,
θ = ϑ = 4, α+ β = q∗ = 4∗ and (S) reads as

−div
(

arctan |∇u|
|∇u|

∇u
)
−∆4u + u + u3 − σ u3

|x|4
= λHu(x, u, v)

+
α

4∗
|v|β|u|α−2u,

−div
(

arctan |∇v|
|∇v|

∇v
)
−∆4v + v + v3 − σ v3

|x|4
= λHv(x, u, v)

+
β

4∗
|u|α|v|β−2v.



(p, q) SYSTEM

While the nonlinearity H in (S) is a Carathéodory function satisfying

(H) For a.e. x ∈ RN it results H(x, ·, ·) ∈ C1(R2), H(x, ·, ·) ≥ 0 in R2,
Hu(x, u, v) = 0 for all u ≤ 0 and v ∈ R, while Hv(x, u, v) = 0 for all
u ∈ R and v ≤ 0.

Furthermore, there exist m, m, γ such that ℘ < m < m < ℘∗,
max{θ, ϑ} < γ < ℘∗ and for every ε > 0 there exists Cε > 0 for which
the inequality

|Hz(x, z)| ≤ mε|z|m−1 + mCε|z|m−1 for any z ∈ R2,

where z = (u, v), |z| =
√

u2 + v2, Hz = (Hu,Hv), and also the
inequalities

0 ≤ γH(x, z) ≤ Hz(x, z) · z for any z ∈ R2,

hold for a.e. x ∈ RN , where θ, ϑ are given in (C3).

Finally, H(x, u, v) > 0 for a.e. x ∈ RN and all (u, v) ∈ R+ × R+.



FUNCTIONAL SPACE

The best Hardy constant, calledH℘ = H(℘,N), is given by

H℘ := inf
u∈D1,℘(RN)

u6=0

‖∇u‖℘℘
‖u‖℘H℘

, where ‖u‖H℘ :=

(∫
RN
|u|℘ dx
|x|℘

)1/℘

,

and D1,℘(RN) denotes the completion of C∞0 (RN), with respect to the norm
‖∇u‖℘ =

(∫
RN |∇u|℘dx

)1/℘.

Since ℘ = p if a1 = 0, while ℘ = q if a1 > 0, the natural space where finding
solutions of (S) is

W :=
(
W1,p(RN) ∩W1,℘(RN)

)
×
(
W1,p(RN) ∩W1,℘(RN)

)
,

endowed with the norm

‖(u, v)‖ := ‖u‖W1,p + ‖v‖W1,p + 1R+(a1)
(
‖u‖W1,q + ‖v‖W1,q

)
,

where ‖u‖W1,p = ‖u‖p + ‖∇u‖p for all u ∈ W1,p(RN) and any p > 1.



MAIN RESULT

THEOREM 1 (FISCELLA & PUCCI, NA 2018)
Suppose that (C1)-(C3) and (H) hold.
Then, for any σ ∈ (−∞, caH℘) there exists λ̃ = λ̃(σ) > 0 such that system

−div
(
A(|∇u|)∇u

)
+ B(|u|)u− σ |u|

℘−2u
|x|℘

= λHu(x, u, v)

+
α

℘∗
|v|β|u|α−2u,

−div
(
A(|∇v|)∇v

)
+ B(|v|)v− σ |v|

℘−2v
|x|℘

= λHv(x, u, v)

+
β

℘∗
|u|α|v|β−2v,

(S)

admits at least one nontrivial solution (uσ,λ, vσ,λ) in W for all λ ≥ λ̃.
Moreover, each component of (uσ,λ, vσ,λ) is nontrivial and

lim
λ→∞

‖(uσ,λ, vσ,λ)‖ = 0. (2)



SKETCH OF THE PROOF

Clearly, the weak solutions of (S) are exactly the critical points of the
Euler-Lagrange functional Iσ,λ : W → R, given by

Iσ,λ(u) :=

∫
RN

[
A(|∇u|) +A(|∇v|)

]
dx +

∫
RN

[
B(|u|) + B(|v|)

]
dx

− σ

℘

∫
RN

(
|u|℘ + |v|℘

) dx
|x|℘
− λ

∫
RN

H(x, u, v)dx

− 1
℘∗

∫
RN
|u|α|v|βdx,

which is well defined and of class C1 on W.

We can set the mountain pass level

cσ,λ = inf
ξ∈Γ

max
t∈[0,1]

Iσ,λ(ξ(t)),

where

Γ = {ξ ∈ C([0, 1],W) : ξ(0) = (0, 0), Iσ,λ(ξ(1)) < 0} .



SKETCH OF THE PROOF

In order to prove the delicate Palais-Smale condition at cσ,λ, for a
Palais-Smale sequence {(un, vn)}n ⊂ W we have to show that:

(i) up to a subsequence, (un, vn) ⇀ (uσ,λ, vσ,λ) in W as n→∞;

(ii) by concentration-compactness principle, there exists λ∗ = λ∗(σ) > 0
such that the weak limit (uσ,λ, vσ,λ) is a solution of (S) for all λ ≥ λ∗;

(iii) since cσ,λ → 0 as λ→∞, the set {(uσ,λ, vσ,λ)}λ≥λ∗ satisfies the
asymptotic property (2);

(iv) there exists λ̃ = λ̃(σ) ≥ λ∗ such that (un, vn)→ (uσ,λ, vσ,λ) in W as
n→∞ for all λ ≥ λ̃.



A SIMPLIFIED SITUATION

THEOREM 2 (FISCELLA & PUCCI, NA 2018)
Suppose that A satisfies (C1), B verifies condition

(B) B ∈ C(R+) and t 7→ tB(t) is strictly increasing in R+, with tB(t)→ 0 as
t→ 0+.

and that (C2)-(C3) and (H) hold.
Then, there exists λ∗ > 0 such that system

−div
(
A(|∇u|)∇u

)
+ B(|u|)u = λHu(u, v) +

α

℘∗
|v|β|u|α−2u,

−div
(
A(|∇v|)∇v

)
+ B(|v|)v = λHv(u, v) +

β

℘∗
|u|α|v|β−2v,

(S ′)

admits at least one nontrivial solution (uλ, vλ) in W for all λ ≥ λ∗. Moreover,
each component of (uλ, vλ) is nontrivial and

lim
λ→∞

‖(uλ, vλ)‖ = 0



SKETCH OF THE PROOF

PROPOSITION

For any σ ∈ (−∞, caH℘) and λ > 0 let {(un, vn)}n ⊂ W be a Palais-Smale
sequence at level cλ such that (un, vn) ⇀ (0, 0) in W as n→∞. Then

(i) either (un, vn)→ (0, 0) in W,

(ii) or there exists R > 0 and a sequence (yn)n ∈ RN such that

lim sup
n→∞

∫
BR(yn)

(
|un|p + |vn|p

)
dx > 0.

Moreover, (yn)n is not bounded in RN .

By this proposition, we use a compactness argument for the translated
sequence {(ũn, ṽn)}n, with ũn = un(·+ yn), ṽn = vn(·+ yn). This fact forces
the main functions in (S ′) are independent of x.



Part 2:

A Hardy double phase problem



HARDY PROBLEM

A. Fiscella, A double phase problem involving Hardy potentials, Appl.
Math. Optim. (2022)

We study the following problem− div(A(x,∇u))− σ
(
|u|p−2u
|x|p

+ a(x)
|u|q−2u
|x|q

)
= g(x, u) in Ω,

u = 0 in ∂Ω,

(PH)

where the main operator is the so-called double phase operator, set as

div(A(x,∇u)) = div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
.

Here, we assume that Ω ⊂ RN is an open bounded set with Lipschitz
boundary and 0 ∈ Ω, σ is a real parameter, 1 < p < q < N and

(a1)
q
p
< 1 +

1
N

, while a : Ω→ [0,∞) is Lipschitz continuous.



HARDY PROBLEM

Here g : Ω× R→ R is a Carathéodory function verifying

(g1) there exists an exponent r ∈ (q, p∗), with p∗ = Np/(N − p), such that for
any ε > 0 there exists cε = c(ε) > 0 and

|g(x, t)| ≤ qε |t|q−1 + rδε |t|r−1

holds for a.e. x ∈ Ω and any t ∈ R;

(g2) there exist θ ∈ (q, p∗), c > 0 and t0 ≥ 0 such that

c ≤ θG(x, t) ≤ tg(x, t)

for a.e. x ∈ Ω and any |t| ≥ t0, where G(x, t) =

∫ t

0
g(x, τ)dτ .

The existence of r and θ are guaranteed by (a1), which joint with q > 1 yields
that q < p∗.



FUNCTIONAL SPACE

Thanks to (a1), the functionH : Ω× [0,∞)→ [0,∞) defined as

H(x, t) := tp + a(x)tq, for a.e. x ∈ Ω and for any t ∈ [0,∞),

is a generalized N-function. Therefore, by

J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math.
1983

we can define the Musielak-Orlicz space LH(Ω) as

LH(Ω) :=
{

u : Ω→ R measurable
∣∣ %H(u) <∞

}
,

endowed with the Luxemburg norm

‖u‖H := inf
{
λ > 0 : %H

( u
λ

)
≤ 1
}
,

where %H denotes theH-modular function, set as

%H(u) :=

∫
Ω
H(x, |u|)dx =

∫
Ω

(|u|p + a(x)|u|q) dx.



FUNCTIONAL SPACE

We point out that

min{‖u‖p
H, ‖u‖

q
H} ≤ %H(u) ≤ max{‖u‖p

H, ‖u‖
q
H}.

The related Sobolev space W1,H(Ω) is defined by

W1,H(Ω) :=
{

u ∈ LH(Ω) : |∇u| ∈ LH(Ω)
}
,

endowed with the norm

‖u‖1,H := ‖u‖H + ‖|∇u|‖H.

The natural functional space where finding solutions of (PH) is W1,H
0 (Ω),

given by the completion of C∞0 (Ω) in W1,H(Ω) which can be endowed with
the norm

‖u‖ := ‖|∇u|‖H,
equivalent to the norm ‖ · ‖1,H, whenever (a1) holds true, as proved in

F. Colasuonno, M. Squassina, Eigenvalues for double phase variational
integrals, Ann. Mat. Pura Appl. (2016)



FUNCTIONAL SPACE

Denoting by the weighted space

Lq
a(Ω) :=

{
u : Ω→ R measurable

∣∣∣∣ ∫
Ω

a(x)|u|qdx <∞
}
,

endowed with the seminorm

‖u‖q,a :=

(∫
Ω

a(x)|u|qdx
)1/q

,

we have the following embeddings.

PROPOSITION (COLASUONNO & SQUASSINA, AMPA 2016)

(i) W1,H
0 (Ω) ↪→ W1,r

0 (Ω) for all r ∈ [1, p];

(ii) W1,H
0 (Ω) ↪→ Lr(Ω) for all r ∈ [1, p∗];

(iii) W1,H
0 (Ω) ↪→↪→ Lr(Ω) for all r ∈ [1, p∗);

(iv) LH(Ω) ↪→ Lq
a(Ω);

(v) Lq(Ω) ↪→ LH(Ω).



HARDY PROBLEM

In order to handle the Hardy potentials in− div(A(x,∇u))− σ
(
|u|p−2u
|x|p

+ a(x)
|u|q−2u
|x|q

)
= g(x, u) in Ω,

u = 0 in ∂Ω,

(PH)

we need a further assumption

(a2) a(λx) ≤ a(x) for any λ ∈ (0, 1] and any x ∈ Ω,

which guarantees for any u ∈ W1,H
0 (Ω) that

Hp‖u‖p
Hp
≤ ‖∇u‖p

p, with ‖u‖Hp :=

∫
Ω

|u|p

|x|p
dx

Hq‖u‖q
Hq,a
≤ ‖∇u‖q

q,a, with ‖u‖Hq,a :=

∫
Ω

a(x)
|u|q

|x|q
dx,

where constant Hm :=

(
m

N − m

)−m

for m = p, q.



HARDY PROBLEM

THEOREM (FISCELLA, AMOP 2022)
Let Ω ⊂ RN be an open, bounded set with Lipschitz boundary and 0 ∈ Ω. Let
1 < p < q < N and a(·) satisfy (a1)-(a2). Let (g1)-(g2) hold true.

Then, for any σ ∈ (−∞,min{Hp,Hq}) problem− div(A(x,∇u))− σ
(
|u|p−2u
|x|p

+ a(x)
|u|q−2u
|x|q

)
= g(x, u) in Ω,

u = 0 in ∂Ω.

(PH)

admits a non-trivial weak solution.

The theorem generalizes the existence result stated in

W. Liu, G. Dai, Existence and multiplicity results for double phase
problem, J. Differential Equations (2018)

where they considered (PH) without Hardy potentials, namely when σ = 0.



HARDY PROBLEM

THEOREM (FISCELLA, AMOP 2022)
Let Ω ⊂ RN be an open, bounded set with Lipschitz boundary and 0 ∈ Ω. Let
1 < p < q < N and a(·) satisfy (a1)-(a2). Let (g1)-(g2) hold true.

Then, for any σ ∈ (−∞,min{Hp,Hq}) problem− div(A(x,∇u))− σ
(
|u|p−2u
|x|p

+ a(x)
|u|q−2u
|x|q

)
= g(x, u) in Ω,

u = 0 in ∂Ω.

(PH)

admits a non-trivial weak solution.

The theorem generalizes the existence result stated in

W. Liu, G. Dai, Existence and multiplicity results for double phase
problem, J. Differential Equations (2018)

where they considered (PH) without Hardy potentials, namely when σ = 0.



HARDY PROBLEM

Indeed, let us consider operator Lσ : W1,H
0 (Ω)→

(
W1,H

0 (Ω)
)∗

, such that

〈Lσ(u), v〉 :=

∫
Ω

(
|∇u|p−2 + a(x)|∇u|q−2)∇u · ∇v dx

− σ
∫

Ω

(
|u|p−2u
|x|p

v + a(x)
|u|q−2u
|x|q

v
)

dx, u, v ∈ W1,H
0 (Ω).

REMARK

Let 2 ≤ p < q < N and σ ∈ (−∞,Kp,q min{Hp,Hq}), with Kp,q ∈ (0, 1).

Then, operator Lσ is a mapping of (S) type, that is if un ⇀ u in W1,H
0 (Ω) and

lim
n→∞
〈Lσ(un)− Lσ(u), un − u〉 = 0

then un → u in W1,H
0 (Ω).



HARDY PROBLEM

Clearly, the weak solutions of− div(A(x,∇u))− σ
(
|u|p−2u
|x|p

+ a(x)
|u|q−2u
|x|q

)
= g(x, u) in Ω,

u = 0 in ∂Ω,

(PH)

are exactly the critical points of the Euler-Lagrange functional
Jσ : W1,H

0 (Ω)→ R, given by

Jσ(u) :=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q,a − σ
(

1
p
‖u‖p

Hp
+

1
q
‖u‖q

Hq,a

)
−
∫

Ω
G(x, u)dx,

which is well defined and of class C1 on W1,H
0 (Ω). However, here we have to

deal with the non-compactness of the embeddings

W1,H
0 (Ω) ↪→ Lp(Ω, |x|−p), W1,H

0 (Ω) ↪→ Lq(Ω, a(x)|x|−q).



Part 3:

Critical Sobolev double phase
problems



FIRST CRITICAL PROBLEM

C. Farkas, P. Winkert, An existence result for singular Finsler double
phase problems, J. Differential Equations (2021)

They considered the following problem
− div(AF(x,∇u)) = u p∗−1 + λ

(
uγ−1 + g(x, u)

)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

driven by the Finsler double phase operator, set as

div(AF(x,∇u)) = div
(
Fp−1(∇u)∇F(∇u) + a(x)Fq−1(∇u)∇F(∇u)

)
,

with F a positively homogeneous Minkowski norm. They also assumed that
Ω ⊂ RN is an open bounded set with Lipschitz boundary, λ is a real
parameter, p∗ = Np/(N − p), exponent γ ∈ (0, 1), g is a subcritical term,
2 ≤ p < q < N and (a1) holds true.



FIRST CRITICAL PROBLEM

C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with
nonlinear boundary condition, Adv. Nonlinear Stud. (2021)

We study the following problem
− div(AF(x,∇u)) + u p−1 + a(x)u q−1 = u p∗−1

+ λ
(
uγ−1+ g1(x, u)

)
in Ω,

u > 0 in Ω,

AF(x,∇u) · ν = u p∗−1 + g2(x, u) on ∂Ω,

(PN)

still driven by the Finsler double phase operator

div(AF(x,∇u)) = div
(
Fp−1(∇u)∇F(∇u) + a(x)Fq−1(∇u)∇F(∇u)

)
.

We assume that Ω ⊂ RN is an open bounded set with Lipschitz boundary, λ is
a real parameter, γ ∈ (0, 1), p∗ = Np/(N − p) and p∗ = (N − 1)p/(N − p),
1 < p < q < N and

(ã1)
Nq

N + q− 1
< p, while a : Ω→ [0,∞) with a ∈ L∞(Ω).



FIRST CRITICAL PROBLEM

Here F : RN → [0,∞) is a positive homogeneous function satisfying

(f1) F ∈ C∞(RN \ {0});

(f2) the Hessian matrix∇2(F2/2)(ξ) is positive definite for all ξ 6= 0;

(f3) the reversibility rF = max
ξ 6=0

F(−ξ)
F(ξ)

is finite.

We point out that in general rF ≥ 1. When F coincides with the Euclidean

norm, that is F(ξ) =
(∑N

i=1 |ξi|2
)1/2

for ξ ∈ RN , of course rF = 1.

In this direction, the operator

div(AF(x,∇u)) = div
(
Fp−1(∇u)∇F(∇u) + a(x)Fq−1(∇u)∇F(∇u)

)
reduces to the classical double phase operator

div(A(x,∇u)) = div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
.



FIRST CRITICAL PROBLEM

The natural solution space for (PN) is the Musielak-Orlicz Sobolev space
W1,H,F(Ω), defined by

W1,H,F(Ω) :=
{

u ∈ LH(Ω) : F(∇u) ∈ LH(Ω)
}
,

endowed with the norm

‖u‖1,H,F := ‖u‖H + ‖F(∇u)‖H.

Here, g1 : Ω× R→ R and g2 : ∂Ω× R→ R are Carathéodory functions
verifying

(h) g1(x, t) = g2(x, t) = 0 for all t ≤ 0 and for a.e. x ∈ Ω and x ∈ ∂Ω,
respectively. Furthermore, there exist θ1 ∈ (1, p), r1 ∈ [p, p∗),
r2 ∈ (p, p∗) as well as nonnegative constants a1, a2 and b1 such that

g1(x, t) ≤ a1tr1−1 + b1tθ1−1 for a. e. x ∈ Ω and for all t ≥ 0,

g2(x, t) ≤ a2tr2−1 for a. e. x ∈ ∂Ω and for all t ≥ 0.



FIRST CRITICAL PROBLEM

THEOREM (FARKAS & FISCELLA & WINKERT, ANS 2021)
Let Ω ⊂ RN be an open, bounded set with Lipschitz boundary, and let
γ ∈ (0, 1). Let 1 < p < q < N and a(·) satisfy (ã1). Let (f1)-(f3), (h) hold
true.

Then, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem
− div(AF(x,∇u)) + u p−1 + a(x)u q−1 = u p∗−1

+ λ
(
uγ−1+ g1(x, u)

)
in Ω,

u > 0 in Ω,

AF(x,∇u) · ν = u p∗−1 + g2(x, u) on ∂Ω,

(PN)

admits a positive weak solution.



FIRST CRITICAL PROBLEM

Clearly, the weak solutions of
− div(AF(x,∇u)) + u p−1 + a(x)u q−1 = u p∗−1

+ λ
(
uγ−1+ g1(x, u)

)
in Ω,

u > 0 in Ω,

AF(x,∇u) · ν = u p∗−1 + g2(x, u) on ∂Ω,

(PN)

are the critical points of the Euler-Lagrange functional Jλ : W1,H,F(Ω)→ R,
given by

Jλ(u) :=
1
p
‖F(∇u)‖p

p +
1
q
‖F(∇u)‖q

q,a +
1
p
‖u‖p

p +
1
q
‖u‖q

q,a −
1
p∗
‖u+‖p∗

p∗

− λ

γ

∫
Ω

(u+)
γ dx− λ

∫
Ω

G1 (x, u+) dx− 1
p∗
‖u+‖p∗

p∗,∂Ω −
∫
∂Ω

G2 (x, u+) dσ,

where u± = max(±u, 0), which is not differentiable in W1,H,F(Ω). Also, we
have to deal with the lack of compactness of embeddings

W1,H,F(Ω) ↪→ Lp∗(Ω), W1,H,F(Ω) ↪→ Lp∗(∂Ω). (3)



FIRST CRITICAL PROBLEM

For this, let Ψ : (0,∞)→ R set as

Ψ(t) :=
1

p2 p−1rF
p −

2 p∗−1c p∗
p∗

p∗
t p∗−p − 2 p∗−1c p∗

p∗

p∗
t p∗−p,

with cp∗ , cp∗ > 0 given by (3). Let %∗ > 0 be the unique value such that
Ψ(%∗) = 0.

Then, for any % ∈ (0, %∗) we restrict Jλ to the closed convex set B%(0), which
is given by

B%(0) :=
{

u ∈ W1,H,F(Ω) : ‖u‖p + ‖F(∇u)‖p ≤ %
}
,

and by minimization and truncation arguments we get our solution.



SECOND CRITICAL PROBLEM

C. Farkas, A. Fiscella, P. Winkert, On a class of critical double phase
problems, J. Math. Anal. Appl. (2022)

We study the following problem{
− div (A(x,∇u)) = λ|u|r−2u + |u|p∗−2u in Ω,

u = 0 on ∂Ω,
(PD)

driven by

div(A(x,∇u)) = div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
,

where Ω ⊂ RN is an open bounded set with Lipschitz boundary, λ is a real
parameter, r ∈ (1, p), p∗ = Np/(N − p), 1 < p < q < N and

(a1)
q
p
< 1 +

1
N

, while a : Ω→ [0,∞) is Lipschitz continuous.



SECOND CRITICAL PROBLEM

THEOREM (FARKAS & FISCELLA & WINKERT, JMAA 2022)
Let Ω ⊂ RN be an open, bounded set with Lipschitz boundary and let
r ∈ (1, p). Let 1 < p < q < N and a(·) satisfy (a1).

Then, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem{
− div (A(x,∇u)) = λ|u|r−2u + |u|p∗−2u in Ω,

u = 0 on ∂Ω.
(PD)

admits infinitely many weak solutions with negative energy values.



SECOND CRITICAL PROBLEM

Clearly, the weak solutions of{
− div (A(x,∇u)) = λ|u|r−2u + |u|p∗−2u in Ω,

u = 0 on ∂Ω,
(PD)

are the critical points of the Euler-Lagrange functional Iλ : W1,H
0 (Ω)→ R,

given by

Iλ(u) :=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q,a −
λ

r
‖u‖r

r −
1
p∗
‖u‖p∗

p∗ ,

which is of class C1 on W1,H
0 (Ω). However, Iλ is not bounded from below.

For this, we introduce a truncation argument to control the critical term,
inspired by

J. García Azorero, I. Peral Alonso, Multiplicity of solutions for elliptic
problems with critical exponent or with a nonsymmetric term, Trans.
Amer. Math. Soc. (1991)



SECOND CRITICAL PROBLEM

Furthermore, in order to study the compactness of

Iλ(u) :=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q,a −
λ

r
‖u‖r

r −
1
p∗
‖u‖p∗

p∗

in the whole space W1,H
0 (Ω), we have to deal with the lack of compactness of

embedding

W1,H
0 (Ω) ↪→ Lp∗(Ω).

Even if W1,H
0 (Ω) ↪→ W1,p

0 (Ω), the application of the Lions’ concentration
compactness principle fails. For this, we exploit a suitable convergence
analysis of gradients, inspired by

L. Boccardo, F. Murat, Almost everywhere convergence of the gradients
of solutions to elliptic and parabolic equations, Nonlinear Anal. (1992)



OPEN QUESTION

Open question: which is the optimal exponent of a Sobolev type embedding
for W1,H(Ω)?

We know from paper

X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear
Anal. (2012)

that W1,H(Ω) ↪→ LH∗(Ω), whereH∗ is the Sobolev conjugate function ofH.
That is,H∗ : Ω× [0,∞)→ [0,∞) is such that

H−1
∗ (x, s) :=

∫ s

0

H−1
1 (x, τ)

τ
N+1

N

dτ, for any (x, s) ∈ Ω× [0,∞)

H1(x, τ) :=

{
τH(x, 1) if 0 ≤ τ < 1,
H(x, τ) if τ ≥ 1.

However, we do not know howH∗ explicitly looks like in the double phase
setting.



OPEN QUESTION

Open question: which is the optimal exponent of a Sobolev type embedding
for W1,H(Ω)?

We know from paper

X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear
Anal. (2012)

that W1,H(Ω) ↪→ LH∗(Ω), whereH∗ is the Sobolev conjugate function ofH.
That is,H∗ : Ω× [0,∞)→ [0,∞) is such that

H−1
∗ (x, s) :=

∫ s

0

H−1
1 (x, τ)

τ
N+1

N

dτ, for any (x, s) ∈ Ω× [0,∞)

H1(x, τ) :=

{
τH(x, 1) if 0 ≤ τ < 1,
H(x, τ) if τ ≥ 1.

However, we do not know howH∗ explicitly looks like in the double phase
setting.



Thank you for your attention!
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