AMILCAR O. HERRERA

TRANSFERENCIA, ADAPTACION Y CREACION DE TECNOLOGIA EN AMERICA LATINA

Introducción

No es tarea fácil en este momento referirse al tema de la creación, transferencia y adaptación de tecnología en América Latina. En primer lugar, porque los acontecimientos políticos y sociales de los últimos años han introducido cambios en la situación general de la región, cuya repercusión sobre las actividades científicas y tecnológicas son todavía difíciles de evaluar con exactitud. En segundo término —y esto es un problema que se presenta siempre cuando se habla de América Latina—, porque la diversidad de los países que la componen hace difícil extraer conclusiones de validez general.

Por otra parte, la tarea se ve facilitada por el hecho de que en América Latina existe una rica bibliografía sobre diversos aspectos de la problemática de la ciencia y la tecnología, principalmente los actuales: capacidad de los sistemas de investigación y desarrollo (I y D) de los países de la región, problemas y metodología de la planificación, transferencia de tecnología en relación con el sistema de patentes, etc. Para no incurrir en repeticiones inútiles,

y dando por supuesto el conocimiento de lo principal de esa bibliografía, en este artículo nos referimos únicamente a los aspectos más fundamentales del tema. Tomamos este camino no sólo para evitar repeticiones sino también porque creemos que se requiere un replanteo, a nivel global, de la forma en que esta área de problemas es tratada en general. Para comenzar, conviene hacer una muy breve revisión histórica de lo sucedido en las últimas décadas.

Desarrollo y política científica en América Latina

Desde comienzos de este siglo, y sobre todo a partir de la Segunda Guerra Mundial, los países de la región trataron de romper el estancamiento de sus economías introduciendo métodos modernos de producción. El factor clave de este esfuerzo fue la generación de un proceso de industrialización que se basó en el bien conocido mecanismo de la substitución de importaciones. El esquema general adoptado fue más o menos similar en todos los países —en particular en los de más desarrollo relativo---: una primera etapa en que se produjeron sólo los bienes de consumo muy simples, seguida por la producción

de bienes durables de consumo más sofisticados y, finalmente, en algunos países, por la creación de una industria pesada más o menos incipiente. Las vicisitudes y consecuencias de este proceso han sido bien estudiadas, de manera que no entraremos más en detalle sobre el particular.

La evolución de los sistemas de l v D tuvo un marcado paralelismo con el crecimiento de la industrialización. Antes del comienzo, o de la aceleración de este proceso, cuando la economía estaba basada principalmente en la exportación de materias primas y en la importación de bienes manufacturados desde los países industrializados, la actividad científica era muy reducida y principalmente consistía en investigación básica conectada con las disciplinas que tenían alguna demanda social, tal como medicina en los países más avanzados de la región. Como la industrialización empieza con el reemplazo de bienes fáciles de fabricar, se necesitó muy poca investigación local. Sin embargo, a medida que el proceso de industrialización avanzó, se necesitó producir bienes más complejos, en áreas donde la tecnología cambia rápidamente debido a la investigación efectuada en los países avanzados. La incapacidad de los sistemas locales de I y D de efectuar investigación tecnológica original, o aun de adoptar en forma inteligente tecnologías desarrolladas en el exterior, fue un factor que contribuyó a la declinación de la capacidad competitiva de la industria local en el mercado internacional, y al estancamiento de la agricultura y de la producción rural en general.

Se hizo entonces necesario elaborar sistemas locales de l y D capaces de una interacción eficiente con el sector productivo. Los sistemas de l y D se crearon con el mismo criterio imitativo con que se inicia la industrialización. Se supuso que una vez creado un sistema "moderno" de l y D —en lo que

respecta a temas de investigación, calidad del personal, equipamiento, etc.—a su debido tiempo éste se conectaría naturalmente al sistema productivo a través de la clásica cadena de investigación básica, investigación aplicada y desarrollo. Para facilitar este acoplamiento se fundaron, además, los organismos a cargo de la planificación de la ciencia: CONACYTS, subsecretarías o ministerios de ciencia y tecnología, etcétera.

En este proceso de construcción y refuerzo de los sistemas de l v D hubo de hecho una considerable ayuda de organismos internacionales: subsidios y préstamos para adquirir equipos científicos, subsidios para proyectos de investigación, misiones de personal calificado para entrenar personal o colaborar en la formulación de políticas científicas, y becas para estudios en el exterior. En América Latina este tipo de ayu'da proveyó una cantidad considerable de equipo para centros de investigación, particularmente en las universidades, y centenares de investigadores latinoamericanos se perfeccionaron en los centros científicos más avanzados del mundo. Finalmente, los países de América Latina dispusieron del elaborado aparato conceptual para la planificación científica —en forma directa o indirecta— creado y perfeccionado en los países más adelantados.

Como es bien sabido, las expectativas generadas por todas esas acciones en favor del desarrollo científico no se cumplieron. Más aún, en los últimos años, y sobre todo en el Cono Sur, la situación en lo que se refiere a la influencia de los sistemas de I y D en la producción local de la mayoría de los países se ha deteriorado.

En una reunión reciente destinada a identificar posibles áreas de investigación en el campo de la política científica de los países subdesarrollados, se trataron de identificar las causas de la situación que acabamos de describir,

y que se repite, en mayor o menor arado, en casi todos los países en desarrollo. En lo que se refiere a la planificación científica, su escaso éxito se atribuyó en gran parte a la carencia de instrumentos metodológicos adecuados. "En general, se han efectuado demasiados estudios detallados a nivel micro... se ha producido demasiada información, pero ha sido de muy poca utilidad". 1 Še señaló, además, la falta o pobreza de esquemas teóricos: "No se dispone de un esquema coherente para ubicar todos los hechos y elementos de lo que se conoce sobre ciencia, tecnología y desarrollo". En el mismo informe se dice: "Se conoce muy poco sobre la forma de operar de los mecanismos políticos en los países en desarrollo, particularmente en áreas tan complejas como la política científica y tecnológica, como para asegurar que el conocimiento obtenido a través de estudios de I y D producirán un impacto importante. Por esta razón, uno de los problemas a examinar como tema de investigación es el funcionamiento de las estructuras políticas en las cuales está inmerso el proceso de formulación de política científica".

Hemos citado estas opiniones porque se han difundido en la región y porque tratan de ir al fondo del problema. Otras consideran que los obstáculos están radicados en factores más circunstanciales: falta de apoyo a los sistemas de I y D, ignorancia de los responsables de la conducción política, etc. Vale la pena, entonces, examinar brevemente esos argumentos.

La primera causa mencionada —las dificultades metodológicas— es poco significativa para explicar la situación. En primer lugar, la mayoría de los instrumentos conceptuales en las ciencias sociales son muy imperfectos —la ma-

vor parte de la economía, por ejemplo- v sin embargo se aplican cuando es realmente necesario. Las deficiencias son compensadas --en la medida de hacer, por lo menos, razonablemente útil la herramienta— a través de ensayo y error, sentido común e improvisación inteligente. En segundo lugar, la Unión Soviética, por ejemplo, comenzó a usar la planificación científica hace bastantes años, cuando los instrumentos metodológicos estaban mucho menos desarrollados que ahora. No se puede negar que la URSS tuvo éxito en conectar su sistema de l y D con sus objetivos económicos y sociales, como lo muestran claramente los resultados. Lo mismo puede decirse en China.

En lo que se refiere a la falta de un marco de referencia global, esto es más un defecto de la investigación en política científica que un problema que afecta a las ciencias sociales en general. En América Latina los científicos sociales han creado un marco de referencia teórico que explica las causas básicas que obstaculizan el desarrollo de los países pobres. Este esquema, representado esencialmente por la teoría de la dependencia, aunque imperfecto e incapaz de explicar todos los hechos observados —como todas las teorías sociales, o más exactamente como la mayoría de las teorías científicas—. ha tenido éxito en explicar muchos de los mecanismos que hacen del subdesarrollo una situación autosostenida. Desaraciadamente, la mayora de los principales estudios en política científica se han centrado en el nivel micro o sectorial. o en los mecanismos directos de toma de decisiones. Es natural que cuando esos trabajos no producen el impacto esperado, la tendencia es buscar la explicación al nivel de los mecanismos estudiados.

En nuestra opinión las causas de la situación ya descrita son más profundas. En la mayoría de los casos, cuando se estudian los problemas de ciencia y tecnología a nivel nacional, se analiza la

¹ Future Directions of Science and Technology Development Policy Research, Creta, 17 at 24 de reptiembre de 1977.

política científica del país considerado. Aunque en términos generales este criterio es legítimo puede conducir a errores a menos que se haga una clara distinción entre lo que podemos denominar políticas científicas "explícitas" e "implícitas". Poltica científica explícita es la política "oficial". Se expresa en leyes y reglamentos, en los estatutos de las organizaciones a cargo de la planificación de la ciencia, y en las declaraciones aubernamentales. La política científica implícita es más difícil de identificar porque, aunque determina el rol verdadero de la ciencia de la sociedad, no tiene una estructura formal; en esencia ella expresa la demanda científica de lo que podemos llamar el 'proyecto nacional' de un país.

El proyecto nacional es el conjunto de objetivos (o modelo de país) al cual aspiran las clases o grupos sociales que tienen el control político y económico del país, en forma directa o indirecta. Este concepto no debe confundirse con lo que comúnmente se denomina "ideal o aspiración nacional", si esto se toma como el ideal social al cual la comunidad, o la mayoría de ella, aspira. Esto sólo puede convertirse en proyecto nacional cuando es adoptado por el sector social en el poder que, en consecuencia, tiene la posibilidad real de implementarlo.

De las definiciones anteriores surgen algunas consecuencias lógicas que son relevantes para nuestro propósito. La primera y obvia es que mientras un país puede no tener una política científica explícita, siempre tiene una política implícita, que resulta de la interacción entre el sistema social y el sistema de l y D (los dos ejemplos pueden ser Estados Unidos y Alemania Federal, donde no existe una planificación central explícita de la ciencia. En mayor o me-

nor medida, es también el caso de casi todos los países capitalistas avanzados). La segunda es quizá menos obvia. Si la política científica explícita de un pais no es el resultado real de la demanda científica y tecnológica del "proyecto nacional", se trata simplemente de una "fachada" y es dive gente respecto de la política científica implícita, no formulada pero realmente imperante. En tercer lugar, cuando el proyecto nacional cuenta con un consenso amplio no existe divergencia entre las dos políticas científicas; la formulación de una política científica explícita divergente sólo se da cuando hay una crisis relacionada con el proyecto nacional, en otras palabras, cuando el grupo social que lo generó conserva todavía la mayor parte del poder político y económico, pero ha perdido el consenso —v con frecuencia, más exactamente, el consentimiento pasivo— del resto de la sociedad. En esas circunstancias puede ser tácticamente conveniente para el grupo dominante declarar que está utilizando, o tratando de utilizar, la ciencia y la tecnología para objetivos sociales ampliamente aceptados, aunque en la realidad los intereses creados de ese sector dominante imposibiliten cualquier esfuerzo para alcanzar esas metas. Aparece entonces esa fachada, esencialmente formal y declarativa, que hemos denominado la política científica explícita.

En la myaora de los países de América Latina existe una amplia divergencia entre las políticas científicas explícitas e implícitas. Basta señalar que los países que han destruido prácticamente la capacidad de sus sistemas de I y D a través de la persecución ideológica, y convertido en política oficial la importación indiscriminada de tecnología externa, principalmente a través de las empresas multinacionales, siguen haciendo declaraciones sobre la importancia de la autonomía científica y manteniendo los organismos —ahora puramente formales— de planificación científica y tecnológica.

² Este tema se trata en detalle en "Social Determinants of Science in Latin America", en Science Technology and Development, compilado por Charles Cooper, Frank Cass, Londres, 1973.

Cuestionamiento del papel social de la ciencia y la tecnología

La evolución o problemática latinoamericana que acabamos de esbozar se repite, con las naturales variaciones determinadas por las diferencias socioeconómicas y culturales, en la mayoría de los países del Tercer Mundo y, como consecuencia, se está produciendo un replanteo completo del tema. Este replanteo, o crisis —para usar un término del cual se abusa con frecuencia—, tiene sus raíces en un pasado relativamente lejano, pero se agudiza con la llamada "problemática del medio ambiente", que emerge al final de los años sesenta. Es interesante para nuestro propósito analizar brevemente la evolución del contenido de esa problemática que, aunque se genera y desarrolla principalmente en los países industrializados, tiene profundas repercusiones en nuestro medio.

Cuando ese movimiento comenzó hace pocos años, su principal preocupación fue la limitación de los recursos naturales disponibles para la humanidad, y la mayor responsabilidad por los peligros vaticinados fue atribuida al rápido crecimiento de la población, particularmente en los países subdesarrollados. A pesar de sus limitaciones, este enfoque contenía dos ideas básicas que, aunque no nuevas en sí mismas, eran nuevas en sus implicaciones globales. La primera fue la concepción de una única humanidad, en el sentido de la interdependencia de todos los grupos humanos —''la nave espacial Tierra''—, y en segundo término la toma de conciencia de que el crecimiento indefinido del consumo es -a largo plazo- una imposibilidad física, y un objetivo social de valor dudoso.

A partir de esas ideas simples, lo que se puede denominar "movimiento ambiental" ha desarrollado una corriente de ideas que trascienden en mucho la concepción original. Incorporó el concepto de "ambiente humano", no me-

ramente como la contraparte material humana del medio ambiente físico, sino como una manera de cuestionar los valores básicos y los objetivos de la sociedad occidental.

Otro hecho que revela la verdadera naturaleza del movimiento ambiental es que resulta difícil concebir que la posibilidad de la existencia de límites físicos al desarrollo económico hubiera causado tanta preocupación de haberse formulado en el siglo XIX, o aun antes de la Segunda Guerra Mundial. Hasta ese momento imperaba una creencia general en los valores fundamentales de la sociedad occidental y, sobre todo, la creencia aparentemente indestructible en la capacidad de la ciencia para superar todos los obstáculos a un progreso material humano indefinido. En las últimas décadas esta confianza ciega en la ciencia —o más exactamente quizá en la tecnología— en gran parte ha desaparecido. Por primera vez desde el comienzo de la Revolución Industrial la humanidad ha empezado a poner en duda los objetivos y el rol social de la ciencia. Algunas de las razones determinantes de este cambio de actitud se pueden identificar fácilmente y se vinculan a la percepción de los peligros actuales o potenciales de varios de los progresos científicos recientes: la bemba atómica, la probabilidad de control de la mente humana a través de psicodrogas, las posibles implicaciones de la manipulación del código genético, el deterioro visible del medio ambiente, etc. Existe otro motivo, además, que es más profundo y sutil: la creciente comprensión de que el considerar la tecnología como una suerte de variable independiente que condiciona el quehacer social —valores, motivaciones, relaciones sociales e interpersonales, etc.— ha llevado a un grado de alienación que despoja a la vida individual y social de todo propósito v significado real.

La principal consecuencia de este debate ha sido destruir en forma irrever-

sible la convicción de que el tipo de desarrollo de Occidente en los dos últimos siglos es el mejor posible o, por lo menos, el predeterminado inexorablemente por el crecimiento natural del conocimiento científico y tecnológico. Aunque comenzado en una actitud necesariamente negativa este cuestionamiento tiene una importante contraparte positiva: la forma en que una sociedad se desarrolla se basa, en última instancia, en los valores centrales de esa sociedad, y esos valores pueden cambiar, como lo han hecho a través de la historia. La dirección en la cual la ciencia —o mejor dicho la tecnología— se desarrolla es, en gran medida, también una función de esos valores; no hay nada predeterminado en el tipo de tecnología que una sociedad crea.

Otra de las consecuencias de este proceso de crítica es una creciente comprensión del papel que juega la tecnología en la sociedad moderna. Hasta hace poco tiempo la tecnología era definida simplemente como "la ciencia de las artes mecánicas e industriales"; era vista básicamente asociada con el sistema de producción material, y por lo tanto conectada casi exclusivamente con los aspectos materiales de la cultura. En los últimos años esta posición ha cambiado completamente. Para L. Winner³ "la tecnología en sus varias manifestaciones es una parte significativa del mundo humano. Sus estructuras, procesos y alteraciones entran, y se hacen parte, de las estructuras, procesos y alteraciones de la conciencia humana, de la sociedad y de la política".

Esta concepción de la tecnología como un elemento central de la cultura —no solamente de sus manifestaciones materiales— significa que la transferencia de tecnología implica transferencia de formas culturales. Esto ha sido expre-

sado muy claramente por A. Reddy: ⁴ "Lo tecnología se parece al material genético: lleva el código de la sociedad que la concibió y, dado un medio favorable, trata de reproducir esa sociedad".

La característica principal de esta transferencia de formas culturales y de organización social a través de la tecnología es que obra en un solo sentido —de los países occidentales avanzados al resto del mundo—, sin prácticamente ninguna acción recíproca. Como resultado, la transferencia de tecnología es indudablemente un factor central en el proceso de occidentalización -o mejor dicho, de europeización y norteamericanización— del mundo moderno, que amenaza obliterar todas las otras forincluyendo aquellas mas culturales, que representan algunos de los más grandes logros de la historia humana.

Tecnología apropiada

El origen del concepto de tecnología apropiada

Como consecuencia de lo que acabamos de ver, los países en desarrollo han comenzado a buscar la forma de romper esa dependencia tecnológica, y aparece así el concepto de tecnología apropiada. Aquí conviene hacer también una breve revisión de cómo se origina y evoluciona ese concepto.

Comprender que la transferencia indiscriminada de tecnología desde los países industrializados no es una solución adecuada para los países en desarrollo no es un hecho nuevo; estaba ya presente en el **Saroyav**a de Gandhi, en el año 1909.

La concepción gandhiana se apoyaba en el desarrollo de las aldeas, con los medios de producción para satis-

³ Winner, L., Autonomous Technology, The MIT Press, Cambridge, Mass., 1977.

⁴ Reddy, A., "Background and Concept of Appropriate Technology", en Appropriate Technology Workshop, 1978, Karnaka State Council for Science and Technology, India.

facer las necesidades básicas en poder de las familias o de cooperativas de familias. Un objetivo primordial en la lucha contra la pobreza era lograr el pleno empleo. "Para el total desarrollo mental y moral del individuo (el individuo tuvo para Gandhi una importancia trascendente) es esencial encontrar un trabajo que le otorgue la oportunidad de expresarse a sí mismo y desarrollar su inteligencia creativa. . ." La educación —basada en el trabajo manual y en la identificación y solución de los problemas de importancia inmediata— era el instrumento para desarrollar la inteligencia creativa. En resumen, autodeterminación (self reliance) a nivel de aldea; concentración en problemas importantes inmediatos, antes que en planes a largo plazo; búsaueda de inteligencia creativa a través del desarrollo total del individuo, y cambios sociales obtenidos por medio de la desobediencia civil no violenta y la no cooperación eran los elementos centrales de su enfoque para el desarrollo

El concepto de desarrollo de Gandhi incluía una política científica y tecnológica explícita que era esencial para su implementación. En sus propias palabras: "Si yo puedo convertir el país a mi punto de vista, el orden social del futuro... incluirá todo aquello que promueva el bienestar de los aldeanos. Visualizo electricidad, construcción de buques, metalurgia y cosas por el estilo, coexistiendo con las artesanías aldeanas. Por el orden de dependencia se invertirá. Hasta ahora, la industrialización ha sido planeada como para destruir las aldeas y sus artesanías. En el estado del futuro ella se subordinará a la aldea y a sus artesanías". 6 La insistencia de Gandhi en la protección de las artesanías aldeanas no significaba una conservación estática de las tecnoEn la doctrina social de Gandhi el concepto de **tecnología** apropiada **está** claramente definido, a pesar de que él nunca usó estos términos.

Por otra parte —y volveremos sobre este punto más adelante—, él definía la tecnología apropiada en el contexto de un enfoque integrado del desarrollo socioeconómico y cultural.

Bajo el gobierno de Nerhu, el desarrollo estratégico de la India se basó en una industrialización planeada en aran escala con el énfasis puesto en la industria básica y pesada, y las ideas de Gandhi sobre tecnología fueron casi totalmente olvidadas hasta principios de los años sesenta. En ese período, y dentro de un contexto diferente, afloraron otra vez; los nombres más conocidos para esta nueva concepción de la tecnología —intermedia y apropiada aparecieron entonces. El primero fue propuesto por Schmager a mediados de los años sesenta. Se refiere a una tecnología que requiere menos capital por lugar de trabajo que las corrientemente en uso. Deberá ser en pequeña escala, descentralizada, atinente a lo rural, basada en recursos locales, y de operatividad y mantenimiento sencillos. Tecnología apropiada fue un término usado por los planificadores indios a principios de los años sesenta, con un sig-

logías tradicionales. Por el contrario, implicaba el mejoramiento de las técnicas locales, la **adaptación** de la tecnología moderna al medio ambiente y a las condiciones de la India, y el fomento de la investigación científica y tecnológica para identificar y resolver los problemas importantes inmediatos. Su objetivo final era la transformación de la sociedad india a través de un proceso de crecimiento orgánico, hecho desde adentro y no por imposición externa.

⁵ Shatt, V. V., Development Problem, Strategy and Technology Choice: Saroyava and Socialist Approaches in India, World Bank, 1978, pág. 3.

⁶ Charan Singh, India Economic Policy; The Gandhian Blueprint, Vikas Publishing House Private Ltd., Nueva Delhi, 1978, pág. 53 (citado por Bhatt, V. V., ob. cit.).

nificado, en la práctica, muy similar a aquel atribuido por Schmager a la tecnología intermedia.

Desde este principio más bien modesto, y sobre todo de resultas de la recién nacida preocupación por el medio ambiente, la terminología asociada con la "nueva tecnología" se ha multiplicado enormemente, a veces añadiendo confusión más que aclarando los conceptos esenciales. En una reunión organizada por UNEP se escucharon los siquientes términos en uso: 7 tecnología intermedia, tecnología apropiada; tecnología de autoayuda; tecnología progresista; biotécnica; tecnología ecológica; tecnología blanda; tecnología alternativa; tecnología conservadora de recursos: nueva alauimia; tecnología de bajo derroche y no derroche; tecnología preservadora del medio ambiente; tecnoloaía liberadora; tecnología del pueblo; tecnología jovial; tecnología radical: tecnología de la comunidad; tecnología blanda II; tecnología alternativa II; tecnología utópica; tecnología tecnología cuidadosa; tecnología humana; tecnología equilibrada; tecnología alternativa III; tecnología reducidora de la desigualdad; tecnología apropiada II: tecnología racional; tecnología alternativa IV

De acuerdo con el mismo informe, "desgraciadamente, algunos de los términos nunca han sido definidos claramente, otros pueden haber sido definidos en un sentido, pero usados en otro, y entendidos aun en un tercero".

La literatura sobre el tema se ha ampliado a tal punto que hasta una revisión breve de su contenido sería una empresa mayor. Parte de esa literatura se refiere al enfoque conceptual, otra parte a las aplicaciones específicas y, finalmente, una considerable porción

añade muy poco a la clarificación de los temas tratados.

Actividades y resultados en la generación de tecnologías apropiadas

Junto con la terminología y la literatura sobre el tema, el número de organizaciones comprometidas en actividades de tecnología apropiada ha crecido incesantemente en los últimos años. Varias instituciones internacionales y nacionales han preparado listas de dichas organizaciones, con una muy breve descripción de sus actividades, en la mayor parte de los casos reducida a mencionar los campos específicos de investigación en los cuales están trabajando. El número de organizaciones incluidas varía grandemente en las diferentes listas. Por ejemplo: la OIT da 22; la Canadian Hunger Foundation, 81; y UNEP, que incluye un mayor número, menciona 696, de las cuales 443 están ubicadas en los países desarrollados y 253 en el Tercer Mundo.

A pesar del respetable número de organizaciones inscritas, esas listas y descripciones no son suficientes para dar una idea clara de la verdadera actividad en el campo de la tecnología apropiada, principalmente porque la mayoría de las organizaciones se incluven sólo sobre la base de una declaración explícita de interés por las tecnologías apropiadas. Un buen ejemplo de la heterogeneidad de las listas es la quía de UNEP, que incluye desde "organizaciones con cierta experiencia v competencia de su personal, cuyos nombres aparecen repetidamente como 'referencia y que se ocupan de investigación' hasta 'organizaciones de las que tan sólo se han suministrado una dirección y un dato ocasional, siendo desconocidas sus actividades y publicaciones' ''. 8

⁷ UNEP, A Conceptual Framework for Environmentally Sound and Appropriate Technologies; Report on the Expert Meeting held at Nairobi, 10. al 4 de diciembre de 1975.

⁸ UNEP, Institutions and Individual Active in Environmentally Sound and Appropriate Technologies, Nairobi, mayo de 1978.