The role of oxidative stress in pathogenesis of GBS
Autor(es): Dogonadze S I,Ninua N G,Gordeziani M G,Kavlashvili M S,Sanikidze T V
Resumo: Axon degeneration accompanying its demielinization is a main course of neurological insufficiency typical for GBS. The mechanisms of axon degeneration, considered as the secondary result of serve inflammation are not established. We aimed to determine the role of oxidative metabolism in viral polyneuropathy pathogenesis. The activity of pro- and antioxidant systems of the body was studied by electron paramagnetic resonance (EPR) method. In blood and cerebrospinal fluid the intensive EPR signals of nitric oxide (NO), complexes of NO with nonhemic iron (HbNO), lypo- and superoxide radicals content noticeably increases, the signals of free Mn2+ and Fe2+ revealed, the activity of blood antioxidant enzymes, ceruloplasmin and katalasa increases (by 60%), superoxidedismitase's and glutation reductases activity decreases (by 20% and 70% correspondingly). It was considered, that inflammatory damage of nervous system induced by different infectious stimulus is initiated by activated immune cell proinflamatory agents (reactive oxygen and nitrogen species). Subsequently the oxidative stress, as result of accumulation of generators of reactive oxygen species, disordered intracellular metabolism products, contributes to axon demielinization and degeneration.
Imprenta: Georgian Medical News, n. 140, p. 43-47, 2006
Descritores: Guillain-Barre Syndrome - Biosynthesis ; Guillain-Barre Syndrome - Cell ; Guillain-Barre Syndrome - Pathogenesis ; Guillain-Barre Syndrome - Inflammation ; Guillain-Barre Syndrome - Public health
Data de publicação: 2006